

Adaptive

Module

Seeing-limited

(>90% of ground-based astronomy!)

Different ways to sense and correct the ground layer...

- Gemini: 5 sodium lasers, Deformable Mirrors
- ESO/MUSE: 4 sodium lasers, adaptive secondary
- Magellan: several wide NGS
- GLAS: Rayleigh LGS at ~20km, green
- SAM: Rayleigh LGS at ~10km, UV

Rayleigh LGS senses preferentially low, strong layers → wide-field correction

SAM at a glance

1:1 re-imaging 3'x3' field

feeds a "Visitor Instrument" & internal imager

Rayleigh LGS timing

December 2, 2005

10 March 2010

December 2, 2005

10 March 2010

- Bench
- Frame
- Displaced axis
- Modified truss

- 355nm, 10W tripled Nd:YAG Laser
 - Standard industrial LASER
 - Similar (532nm) LASER used for MMT AO system

Instruments with SAM

- SAM-I a Simple Optical imager matched to AO corrected images
 - 3 x 3 arcmin FOV @ 0.07 arcsec/pixel
 - E2V 4k x 4k CCD
 - Filter wheel for 7 filters
- Visitor Instruments SAM reproduces the SOAR focal plane at 1:1 scale, and the provides a copy of the ISB bolt circle allowing any (relatively small and light weight) instrument to be mounted
 - HR cam commercial EM CCD camera for fast time series & speckle
 - SIFS
 - BTFI
 - Spartan
 -
- Accessible space has been reserved in the collimated beam to allow the installation of e.g. a Fabry-Perot Etalon

SAM Performance Predictions

- New data for Cerro Pachon (MASS+DIMM)
- Models representative of good, typical, bad conditions
- LGS @ 10km, two tip-tilt NGS at 2.5'

Detailed predictions

Wavelength 0.7 μ m, SOAR \rightarrow SAM

Conditions	FWHM, arcsec	EE(0.3")
Good, z=0°	0.45 → 0.17	0.20 → 0.39
Good, z=50°	0.60 → 0.28	0.12 → 0.25
Typical, z=0°	0.55 → 0.25	0.14 → 0.28
Typical, z=50°	0.74 → 0.43	0.09 → 0.16
Bad, z=0°	0.68 → 0.37	0.10 → 0.19
Bad, z=50°	0.91 → 0.60	0.06 → 0.10

FWHM gain ~2x; EE(0.3") gain ~2x

SAM First Light

- SAM was installed on SOAR on 3 Aug 2009
 - Goal was to test closure of AO loop in NGS mode
- The weather did not cooperate
 - Aug 6 7: two cloudy nights
 - Aug 31 Sep 3: 2nd run, some data with mostly bad seeing
- Nonetheless served to whet everyone's appetites

10 March 2010

<u>NoAO → YesAO</u>

<u>Next Steps</u>

- SAM is now back in the lab
 - Integration & test of Tip-Tilt Sensors & ADC
 - Fabrication of SAM-I Dewar nearing completion
 - E2V 4kx4k CCD in hand
- LASER under test in Lab
- Waiting for delayed delivery of optics for LASER launch telescope
 - All mechanical parts designed and being fabricated
- Anticipate going back to the telescope in July/August
 - Full shake down of SAM in NGS mode
 - First Laser Launch
- Commissioning during 2010B/2011A