SOAR Telescope Status

Workshop OPD, SOAR E Gemini – Passado, Presente e Futuro

SOAR Telescope Status

The SOAR Consortium

The Telescope

- 4.1 m clear aperture
 - f/16 Ritchey-Chrétian
 - Active control of M1 & M2
 - 30Hz Tip-Tilt correction using M3
- Best possible images over Isokinetic Patch
 - 8.5 arcmin Science field
 - 10x10 arcmin guide field
- Large Instrument Payload
 - 2 Nasmyth ports
 - 3 instruments on each
 - 3 Bent Cass
 - Facility wavefront sensor
 - 2 instruments
 - Rapid switching between instruments

SOAR Telescope Status

Active Optics System

<u>M1</u>

4.3m diameter (4.1m C.A.) 10cm thick (3,200Kg) ULE face sheet

Support System

- Steel "honeycomb" reaction structure
- 120 axial actuators
 - Electromechanical with force feed back
 - 3 designated as fixed "hard points" define position & tilt

6 actuated tangential links in a pinwheel arrangement

- Act together as two triangles emulating a kinematic support
 - One set holds position and measure forces
 - The other set "mirrors" the measured forces

Replaces original <u>defective</u> passive system

- Severely impacted early science operation

SOAR Telescope Status

Active Optics System

<u>M2</u>

- 0.615m diameter, 80% light weighted (20Kg) ULE mirror
- 6-axis Hexapod positioning system

<u>M3</u>

0.655 x 0.470 m, 80% light weighted (30Kg) ULE Mirror

Fast Tip-Tilt Gimbal

- Provides Tip-Tilt correction @ ~30Hz closed loop bandwidth
 - Original Specification was 50Hz
- Rotates to direct light to 2 Nasmyth, and 3 Bent Cass instrument ports

SOAR Telescope Status

A Brief History

- Aug 1997 Project initiated
- Jan 2000 Construction starts on site
- Oct 2002 Telescope mount installed & completed
- Jan 2004 Optical system delivered to Chile & installed
- April 2004 1st light and dedication ceremony
 - Serious problem with lateral support system identified
 - Severely limits ability to do science
- Feb 2005 (2005A) "early science" starts using telescope "as is"
 - ~ ~20% science time with SOI and OSIRIS
- June 2006 Installation & test of new lateral supports completed
- August 2006 (2006B) Effective start of science operations
 - Science time ramps up from ~40% in 2006B to 80% in 2009A
 - Balance of time used for engineering, mostly instrument commissioning
- Oct/Nov 2009 major shutdown for recoating of all optics
- Feb 2010 (2010A) onward
 - 80% science fraction
 - 20% instrument commissioning

An Even Briefer History

- 1997 2004 Building the telescope
- 2004 2006 Making it work
- 2006 2011 Instrument commissioning 🤳 & Science use 1
- 2010 Onward Fully Exploiting SOAR's potential

Instrument Availability

- SOI
 - Available for science since 2005A, Working reliably
- OSIRIS
 - Available for science since 2005A, showing its age, but mostly reliable
- Goodman
 - Available for single slit & broad band imaging since 2008B
 - Work continues at UNC to implement multi-slit mode with science use anticipated by the end of 2010
 - ADC delivered to Chile and ready for commissioning
- Spartan
 - Available for science starting in 2010A
- SIFS
 - Delivered in Dec 2009 & installed on telescope, Commissioning under way
 - Shared risk science use starting in 2010B ?
- BTFI
 - Delivery anticipated in mid 2010
 - Initially only available to Brazilian users
- SAM
 - Initial tests on telescope in NGS mode during August 09
 - First laser launch mid 2010
 - Shared risk science use 2011A?
- STELES
 - Delivery anticipated in early 2011
- More on instruments in Later talks

Performance Metrics

- SOAR costs ~US\$ 12k/night
- How much <u>Science</u> you get for your <u>buck</u> depends on:
 - Delivered Image Quality
 - Maximizing this is of course what SOAR is all about
 - Telescope Availability
 - Lost time, lost money
 - Whether its because the telescope or its instruments aren't working ...
 - Shutter Open Time
 - ... or because you are slewing, finding your object, tuning the optics, reading out the detector, or offsetting between dithered exposures
 - Mirror Reflectivity
 - We don't want a 4.1m telescope with the effective collecting area of a 1.5m, especially in the blue
 - Having 3 mirrors (4 for side-ports) is not a great start
 - And other things yet to be quantified
- How well are we doing ?
- How can we do better ?

Delivered Image Quality

Pg 10

Since replacing lateral supports

- Regularly achieve FWHM consistent with site seeing
 - But some degradation in the very best seeing
- Best images
 - ~0.4" in V w/ SOI
 - ~0.3" in J w/ Spartan
 - But requires considerable attention to telescope focus
 - ~0.21" in K w/ OSIRIS (under sampled)
- Mirror stays tuned for extended periods when telescope is tracking
 - But keeping things tuned remains a hit on observing efficiency

Delivered Image Quality

- Optics Tuned
 - After ~1st hour (Typically see rapid change @ start of night)
 - Every ~2 hours during night
 - After Large elevation change
- DIQ matches seeing monitor
 - But significant overhead

- Optics only tuned at start of night
- DIQ much worse than DIMM
- It pays to keep the optics well tuned whenever the seeing is good, however, this entails significant overhead

DIQ Issues & Solutions

- Residual low order aberrations not handled by open loop contro
 - <u>Focus</u> strong, incompletely modeled temperature dependence
 - Astigmatism residual astigmatism after large changes in elevation
 - Upgrade guiders to include low-order wave front sensing capability allowing closed loop control
- **Poor Tip-Tilt servo Performance**
 - Does not fully correct atmospheric tip tilt
 - Does not suppress mount jitter & wind shake
 - Developing new digital servo hardware (next slides)
- Wind Shake
 - Improve Tip-Tilt performance
 - Implement wind screen
- Dome & Mirror seeing
 - Mirror flushing system was included in design, but has never been implemented
 - Understand optimal use of daytime cooling & night time ventilation
 - Eliminate "chimney" effect from staircase and freight elevator

<u> Tip-Tilt Servo – Current performance</u>

- Current Best Case Performance
 - Bright Star (R < 13), Frame rate > 200Hz → Servo limited performance

- Error Rejection Frequency is only ~5Hz
 - Only get correction for frequencies lower than this
 - Servo peaking actually *amplifies* frequencies just above this
- Error Rejection at ~1Hz is only ~ 10db
- Residual jitter σ_{tt} ~ 0.06" RMS (0.14" FWHM) with no wind
 - Significant degradation of DIQ for both SPARTAN & SAM in best seeing

Tip-Tilt Servo – Problem & Solution

- Current Positio
 - Severe axi
 - As configure signals being
 - This loop v
 measurem
 - In addition th and difficult t

rformance 0Hz, nonlinear op, the guider

icies, and Il sensor nics are Inflexible

- Old hardware being replaced by a modern digital servo controller
 - Guider signals will be used to drive M3 directly
 - Current position sensors only used to position mirror when not guiding
 - Improved performance with the flexibility of a fully programmable
 - Being developed as a "plug & play" replacement for the existing hardware
 - New hardware is currently under test in the laboratory and should go to the telescope next month

Tip-Tilt Servo – Predicted Performance

No wind

With max operating wind speed

- Given the expected performance @ 200Hz frame rate Tip-Tilt will meet original expectations. This requires an R < 13 guide star.
 - Corrects Atmospheric Tip-Tilt (very little power above 10Hz)
 - Squashes mount periodic error
 - Significantly attenuates wind shake
 - Residual jitter
 - $\sigma_{tt} \sim 0.03$ " RMS (0.07" FWHM) with no wind
 - $\sigma_{tt} \sim 0.04$ " RMS (0.09" FWHM) with max operating wind speed

SOAR Telescope Status

Pg 15

Availability

SOAR Availability (All Partners)

SOAR Availability ((Brazil)

SOAR Telescope Status

Observing Efficiency

	SOAR Observing Efficiency							
	Science	Readout	Pointing	Acquisition	Other			
Total	57%	17%	9%	13%	7%			
Average	55%	11%	9%	14%	11%			
Average (no time Series)	48%	7%	12%	18%	17%			
SOI	69%	3%	9%	11%	8%			
SOI (Time Series)	75%	17%	4%	4%	0%			
Goodman	29%	19%	14%	24%	14%			
Goodman (Time Series)	64%	25%	3%	9%	0%			
OSIRIS XD	61%	2%	11%	15%	10%			
OSIRIS Hi Res	31%	3%	12%	21%	34%			

• Analysis of Brazilian Service Observing logs for 2008B + 2009A

- Percentage of clear hours on nights scheduled for observing
 - Start of night set up including initial tune of mirror is NOT included
- Science = shutter open time on science targets, calibrations excluded
- Readout = readout time and related overheads
- Pointing = time while moving telescope until guiding
 - Includes slew time, optics settling time, guide star acquisition
- Acquisition = time from 1st acquisition to 1st science exposure
- Other = everything else
 - Calibration lamps, dither time in IR
 - Mirror tuning and focusing during observing time
 - Failures (~2% in Brazilian time)

Observing Efficiency

- Where are improvements possible
 - Optics tuning with wave front sensor
 - Procedure is already automatic & fairly streamlined
 - Limit set by
 - exposure time (to average out seeing)
 - Adjustment time of M1 support system
 - Occasional slow convergence when conditions are unstable
 - Best "solution" is to implement wave front sensing with guider
 - Allows tuning without moving from target position
 - Focus adjustment with M2 is rapid & correction of astigmatism with M1 is not too slow
 - Slew to object
 - Telescope is fast, dome is slower but not too bad
 - Adjustment of M1 to new position is glacial
 - Large changes of Elevation must be accomplished in stages for mirror safety
 - No improvement possible → observing programs must be planned with this in mind
 - Guide star acquisition
 - Guide star selection should be done in advance, or worst case during slew
 - Improvements to the guider pointing model would improve efficiency of finding selected star too

Observing Efficiency

- Where are improvements possible (ctd.)
 - Target acquisition
 - Little overhead for imagers
 - Big overhead for Spectrographs (Goodman & OSIRIS both)
 - Hard to center on narrow slit
 - Slit position is not stable & reproducible
 - Time to switch between acquisition & spectroscopy is long
 - Time to switch between instruments
 - Most of the steps are fast, but they tend to happen in series rather than parallel
 - A general problem
- Instrument Specific Issues
 - Goodman
 - Slow CCD readout
 - Need to take quartz flats during night to correct fringing (slit instability)
 - Some mechanisms (e.g. slit changer) are slow
 - Lacks scripting capabilities to automate common actions
 - OSIRIS
 - Need to take quartz flats during night to correct fringing (slit instability)
 - Some mechanisms are slow
 - Dithering but that's the IR for you but could it be faster ?

SOAR Telescope Status

Mirror Reflectivity

3. S	Before Aluminizing				After Aluminizing			
	470	530	650	880	470	530	650	880
M1	86.5%	86.6%	85.7%	85.9%	89.8%	89.9%	88.5%	88.1%
M2	83.0%	86.0%	86.0%	81.0%	91.6%	91.3%	90.0%	88.4%
M3	86.0%	87.0%	86.0 <mark>%</mark>	85.5%	92.4%	92.3%	91.0%	88.4%
Total	61.7%	64.8%	63.4%	59.5%	76.0%	75.7%	72.5%	68.8%

- All three mirrors were recoated in Nov 2009
 - M1 AI sputtered in the Gemini plant
 - M2 & M3 conventional aluminizing on Tololo
 - Recovered reflectivity and quality of original coatings
- Aluminizing every 4-5 years is probably required
 - It is a big task however

SOAR Telescope Status

SOAR Telescope Status

SOAR Telescope Status

SOAR Telescope Status

SOAR Telescope Status

SOAR Telescope Status

SOAR Telescope Status

SOAR Telescope Status

SOAR Telescope Status

SOAR Telescope Status

The Aluminizing Team

SOAR Telescope Status

Science with SOAR

- SOAR data has been used in 40 refereed publications, 5 PhD and 1 MSc theses to date
- Some selected highlights:
 - Haislip et al 2005 Nature Highest Z GRB known at the time
 - Kepler, Castanhiera, et al 2005 ... 2009 (4 papers, thesis) ZZ Ceti stars
 - Cecil & Rashkeev 2007 (AJ) High resolution imaging of Mercury
 - Oliviera, Steiner 2007 CAL 87
 - Beers et al 2007 (AJ) Metal poor stars in the galactic halo
 - Groh et al 2007 (A&A) Confirmation of WR candidates in Westerlund 1
 - Donahue et al 2007 (AJ), 2009 (ApJ), Gimeno et al 2007 (AJ), Santiago et al 2008 (A&A) – studies of galaxy mergers and cooling flows
 - Tokovinin et al (2008 PASP, 2010 AJ) Speckle observations of binaries
 - Barlow et al 2008 (ApJL) 2009 (AJ) white dwarf binaries
 - Pellegrini et al 2009 (ApJ, thesis) detailed study of the Orion bar
 - Hsieh 2009 (AJ) Main asteroid belt comets

Science with SOAR

Left: XMM-Newton 0.5-2 keV mosaic of A3627 from an 18 ks observation. Right: the composite X-ray (Chandra) / optical (SOAR) image of ESO 137-001's tail. From Sun et al (2010) ApJ 708, 946