Photometry of binary star clusters in the Small Magellanic Cloud

João F. C. Santos Jr. (UFMG), Alex A. Schmidt (UFSM), Eduardo Bica (UFRGS)

Introduction

- True (physical) cluster pairs/multiplets occur in great numbers in both Clouds (Bhatia & Hatzidimitriou 1988; Bhatia 1990)
- About 13% of all SMC clusters catalogued in a recent census (Bica et al. 2008) take part in multiple groupings, which may include merging systems
- The aim of the present project is to determine fundamental properties as well as structural characteristics of a sample of SMC cluster binary/merger candidates

Data

Sample: 8 pairs/merger candidates

Merger candidates

Binary candidates

SMC image for chart orientation

Cluster / field contrast

merger candidates

Radial density profile

- Star counts in rings 5" wide
- Data limited in V for maximum contrast field/cluster
- Constant background fitted to the 4

Star Density Map (Isopleth)

$(m-M)_{o} = 19 \rightarrow 3.3 " \sim 1 \text{ pc}$

outermost rings

• 2-parameter King function fitted to the background corrected radial profile

Non-coeval case

Colour-magnitude diagrams

- The CMD was built from data of a central circular area of radius < 3R in most cases
- Smaller radius (=R) was used whenever the two components were too close (IC1612E/W)
- Two isochrones indicate the age difference between the components
- The best matching isochrone was chosen by fixing (m-M) = 19.0. E(B-V), age and Z were free parameters

Conclusions

Table 1: Cluster sample and derived parameters.

Cluster	E(B-V)	age	Ζ	R_c	Δ age	separation
		(Myr)		(pc)	(Myr)	(pc)
NGC 220 (D)	0.10 ± 0.03	80 ± 10	0.008	2.5 ± 1.0		_
NGC 222 (D)	0.10 ± 0.03	80 ± 10	0.008	1.5 ± 0.5	0	28
NGC 241 (E)	0.05 ± 0.01	80 ± 10	0.008	2.0 ± 1.0		_
NGC 242 (E)	0.05 ± 0.01	60 ± 10	0.008		20	9
B78 (F)	0.08 ± 0.02	55 ± 10	0.008			_
L 51 (F)	0.08 ± 0.02	35 ± 10	0.008	1.5 ± 0.3	20	17
IC1612W (G)	0.07 ± 0.01	120 ± 30	0.008	2.3 ± 0.5		_
IC1612E (G)	0.07 ± 0.01	60 ± 10	0.008	1.9 ± 1.0	60	8
NGC 422 (H)	0.06 ± 0.01	110 ± 30	0.004	1.7 ± 0.5		_
IC 1641 (H)	0.06 ± 0.01	500 ± 30	0.004	2.2 ± 1.0	390	20
NGC 376 (B)	0.09 ± 0.02	50 ± 10	0.008	3.2 ± 1.3		_
K 50 (C)	0.03 ± 0.01	50 ± 10	0.004	3.0 ± 1.2		_
IC1611 (A)	0.07 ± 0.01	140 ± 30	0.002	2.4 ± 1.1		_

- NGC376 and K50 (but not IC1611) show merger signs: *bumps in the RDP*, *isopleth distortions* and have ages (50 Myr) consistent with formation time scales (e.g. Sugimoto & Makino 1989)
- Their core radius are the largest among the sample and their limiting radius are above the mean for SMC clusters at that age
- The mass of the sample clusters range between ~10³ to $10^4 M_{III}$. According to dynamical models subject to LMC tidal field, clusters with $10^4 M_{sm}$ and 6 pc apart would merge in 10 Myr. The same occurs for $10^4 M_{sun}$ clusters 14 pc apart (Bhatia 1990).
- Components far apart than these limits may not merge, being disrupted by the galactic tidal field.

References

- Bhatia R. K. 1990, PASJ, 42, 757
- Bhatia R. K., Hatzidimitriou D., 1988, A&A, 230, 215
- Bica E., Bonatto C., Dutra C. M., Santos Jr. J. F. C., 2008, MNRAS, 389, 678
- Sugimoto D., Makino J., 1989, PASJ, 41, 1117

Acknowledgements: FAPEMIG, LNA