LSST Workshop – Apr 2012

Observing Cosmological Anisotropies with

Miguel Quartin

Instituto de Física Univ. Federal do Rio de Janeiro

Dark Energy in 2 slides

- Observational evidence for dark energy:
 - Cosmic Background Radiation (CMB) → Nobel Prize 2006
 - Supernovae → Nobel Prize 2011
 - Matter power spectrum in large scale structure
 - Age of the Universe > age of oldest stars
 - Baryon Acoustic Oscillations
- A flat universe with only standard model particles + dark matter cannot explain any of the above!

Dark Energy in 2 slides

$$\Omega_m + \Omega_\Lambda = 1 - \Omega_k$$

N.B.: BAO →
 Baryon Acoustic
 Oscillations ↔
 matter power
 spectrum

Homogeneity and Isotropy

- The most basic (and old) tenets of cosmology
- Friedmann (Lemaître) Robertson Walker (FRW) metric:
 - most general homogeneous and isotropic metric
 - overwhelmingly successful at describing the universe in large-scales
 - Consistent with all current observations

$$ds^{2} = -dt^{2} + \frac{a^{2}(t)}{1 - kr^{2}}dr^{2} + a^{2}(t)d\Omega^{2}$$

- Hard to probe directly \rightarrow *lightcone* vs. *const. time* slices:
 - Possibility → more exotic models may also be consistent with data
 - e.g.: void models; anisotropic curvature models

Homogeneity?

LTB metric (spher. symmetric, inhomogeneous) → Gpc
 Void models

$$ds^{2} = -dt^{2} + \frac{[R'(t,r)]^{2}}{1 - k(r)}dr^{2} + R^{2}(t,r)d\Omega^{2}$$

- Surprinsingly successful as an accelerating model without Dark Energy;
- Can fit all observations on the light cone SNe, BAO & CMB
- But may fail for observations inside the light cone (kSZ, redshift drift & CMB blackbody spectrum)

Marra, Notari 1102.1015 (CQG) Zhang, Stebbins 1009.3967 (PRL) Quartin, Amendola 0909.4954 (PRD) Caldwell, Stebbins 0711.3459 (PRL)

Isotropy?

- People usually consider 2 possibilities
 - Shear
 - Vorticity
- But there is a 3rd type of anisotropy: (spatial) curvature anisotropy
 - Basically: the 3-curvature can be different in different directions
 - There exists aniso. curv. models which are
 - Homogenous
 - Irrotational
 - Shear-free

Koivisto, Mota, Quartin, Zlosnik 1006.3321 (PRD)

Are we taking supposed symmetries too seriously???

LRS Metrics

We focus on this Locally Rotationally Symmetric (LRS) axi-symmetric and homogeneous class of metrics

$$ds^{2} = -dt^{2} + a^{2}(t) dy^{2} + b^{2}(t) \left[d\xi^{2} + \frac{1}{|k|} S^{2}(\sqrt{|k|}\xi) d\phi^{2} \right]$$

$$S(x) \equiv \{sin(x), x, sinh(x)\}\$$
for $\{k > 0, k = 0, k < 0\}$

- k > 0: Kantowski-Sachs metric $(R^2 \times S^2)$ S^2 : 2-sphere
- k = 0: Bianchi I metric $(R^2 \times R^2)$
- k < 0: Bianchi III metric $(R^2 \times H^2)$ H^2 : 2-hyperboloid

LRS Metrics (2)

- These models exhibit a preferred direction
 - E.g.: $k > 0 \rightarrow (R^2 \times S^2) \rightarrow R \text{ (time) } \times (R \times S^2)$
- For simplicity, we assume $\ a(t)=b(t)$
 - No shear!
 - We can then write:

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t) \left[\mathrm{d}\chi^2 + \chi^2 \mathrm{d}\theta^2 + \frac{1}{|k|} S^2 \left(\sqrt{|k|} \, \chi sin\theta \right) \mathrm{d}\phi^2 \right]$$

$$S(x) \equiv \{sin(x), x, sinh(x)\}\$$
for $\{k > 0, k = 0, k < 0\}$

The "SIGA" Condition

- ∃ anisotropic models with an isotropic expansion
 - Imperfect fluid

Mimoso & Crawford CQG 10 (1993) 315

$$(\pi_{ab})=2(E_{ab})$$
 anisotropic stress electric part of the Weyl tensor

 SIGA → SIG + A = Shearless Irrotational Geodesic (SIG) models with Anisotropy

Particular Examples

- There are "simple" models that achieve the SIGA cond.
 - a canonical 2-form B_{ab} (a Kalb–Ramond field)
 - a min-coupled, inhomogeneous massless scalar field
 - preliminary results → SIGA condition is stable

Koivisto, Mota, Quartin, Zlosnik 1006.3321 (PRD) Carneiro & Mena Marúgan gr-qc/0109039 (PRD)

- More interesting → phenomenology of anisotropic curv.
 - In general → not too much model dependent

Observational Effects (*i.e.* "So what?")

LRS metrics → spatial sections contain both flat and curved surfaces

- SIGA condition → isotropic expansion + aniso. curvature
 - H(t), redshift $z \& comoving distances <math>\rightarrow isotropic$
 - Angular diameter & luminosity dist. → anisotropic
 - N.B.: there are 2 types of angular diameter distances
 - 1-D: d_{1A} = length / angle
 - 2-D: d_{2A} = area / solid angle

d_{2A} is related to d_L by theReciprocity Theorem

Angular diameter dist. d_{2A}

 $d_{2A} \equiv \text{area / solid angle}$

$$d_{2A}(\theta)^{2} = \frac{a^{2}(t)\chi}{H_{0}\sqrt{2|\Omega_{k0}|}} \frac{S\left(H_{0}\sqrt{2|\Omega_{k0}|}\chi \sin\theta\right)}{\sin\theta}$$

Compare with the FRW one:

$$\left[d_A^{\text{FRW}}\right]^2 = \frac{a^2(t)}{H_0^2 |\Omega_{k0}|} S^2 \left(H_0 \sqrt{|\Omega_{k0}|} \chi\right)$$

$$S(x) \equiv \{sin(x), x, sinh(x)\}$$

Observational Effects – Summary

- The CMB is isotropic at the background level
- CMB is therefore sensitive only to perturbations
 - Full perturb. equations recently derived in LRS metrics
 Tom Zlosnik 1107.0389
 - Correlations between $\ell \leftrightarrow \ell+2$ in the $a_{\ell m}$'s *Graham, Harnik, Rajendran 1003.0236 (PRD)*
- BAO: 2 kinds of BAO: radial & transversal
 - Radial → measure comoving dist. (isotropic)
 - Transversal → measure ang. diam. dist. (anisotropic)
- SNe, weak-lensing, and more???

Observational Effects – SNe

- The angular diameter distance has an angular dependence → so will SNe magnitudes!
- SNe data → Look for a preferred direction
- Currently: ~10³ SNe measured
 - Near future: ~10⁴ SNe → DESurvey + SN Factory + SN Legacy Survey + Pan-STARRS + PAU + J-PAS ...
 - Around 2020: $\sim 10^5$ SNe / year \rightarrow LSST alone
 - Effective # depend on contamination / photo-z / etc.
- But... error bars are already dominated by systematics
 - Huge efforts needed to understand / control systematics!

SNe Systematics

Systematic	SNLS3 ¹⁴³	CfA ²⁷ /ESSENCE ⁴⁴	SDSS-II ²⁶	SCP ²⁸
Best fit w (assuming flatness)		-0.987	-0.96	-0.997
Statistical error		0.067	0.06	0.052
Total stat+systematic error		0.13	0.13	0.08
Systematic error breakdown				
Flux reference	0.053	0.02	0.02	0.042
Experiment zero points	0.01	0.04	0.030	0.037
Low-z photometry	0.02	0.005		
Landolt bandpasses	0.01		0.008	
Local flows	0.014	• • •	0.03	
Experiment bandpasses	0.01		0.016	
Malmquist bias model	0.01	0.02		0.026
Dust/Color-luminosity (β)	0.02	0.08	0.013	0.026
SN la Evolution		0.02		
Restframe U band		• • •	0.104	0.010
Contamination		• • •		0.021
Galactic Extinction			0.022	0.012

Table 1: Best-fit values of $\langle w \rangle$ and error estimates. For the CfA3/ESSENCE column

N.B. girl youngest ever to discover a supernova

BY TOBI COHEN, POSTMEDIA NEWS

JANUARY 4, 2011

COMMENTS (16)

SN2010lt

STORY

PHOTOS (1)

VIDEO (1)

Click here top stories by people i neighbour across the

STORY TO

⊠ E-mail

Drint t

Print th

Comm

Share

Font: A A

The 10-year old

andout

Kathryn Aurora Gray is taking her new celebrity in stride after becoming the youngest person ever to discover a supernova.

The 10-year-old Fredericton girl's phone has been ringing off the hook

SNe Results ("SALT2")

Results depend on fiducial metric!

SNe Results (2)

Any preferred direction in the Union catalog? (300 SNe)

Interpretation not straightforward!

SNe Results (3)

Any preferred direction in the Union2 catalog? (500 SNe)

Interpretation not straightforward!

SNe Forecasts

- We generated some SNe mock catalogs
- Two goals:
 - How many SNe are needed to detect a preferred direction
 - Better interpret current results

$$\mu_{\rm LRS} - \mu_{\rm FRW} \approx -0.4 H_0^2 \chi^2(z) \Omega_{k0} \cos^2 \theta + \mathcal{O}(\Omega_{k0}^2)$$

$$\frac{\mathrm{Signal}}{\mathrm{Noise}} \sim 0.6 \,\Omega_{k0} \sqrt{N_{\mathrm{SNe}}}$$

• S/N > 3
$$\rightarrow N_{\rm SNe} \gtrsim \frac{20}{\Omega_{k0}^2}$$

SNe Forecasts

- Assumptions:
 - Only statistical errors considered
 - Fiducial $\Omega_{k0} = -0.1$
 - All-sky coverage
- Top: 1000 SNe
- Middle: 3000 SNe

Bottom: 10000 SNe

Ongoing work

- Separate the observable effects of aniso. curv. & shear
- Study BAO → In principle very useful here:
 - But: need to re-derive BAO in LRS metrics
- CMB peak-positions anisotropy
- Weak-lensing → intrinsic ellipticity
- (maybe...) explore full perturbation equations

Nunes, Quartin, Zlosnik (in prep)

Precision Cosmology vs.
Accurate Cosmology

The CMB Dipole

- $lacksquare{lacksquare{\circ}}$ CMB Temperature: $T_{
 m CMB} = 2.725\,K \left[1 + rac{\Delta T(heta,\phi)}{T}
 ight]$
- Spherical Harmonics decomposition:

$$\frac{\Delta T(\theta,\phi)}{T} = \sum_{\ell} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}$$

- $\ell = 0 \rightarrow \text{monopole}$
- $\ell = 1 \rightarrow \text{dipole: } \sim 10^{-3}$
- $\ell = 2 \rightarrow \text{quadrupole: } \sim 10^{-5}$
- $\ell > 2 \rightarrow all \sim 10^{-5}$

The CMB Dipole (2)

- The CMB dipole ~ 100 times larger than other multipoles
 - Reason: Doppler effect due to our peculiar motion
- CMB dipole → measurement of v_{CMB}
 - $v_{CMB} \approx 370 \text{ km/s} \rightarrow \beta \equiv v/c = 1.231 \ 10^{-3}$
 - direction → $l = 263.99^{\circ} \pm 0.14^{\circ}$; $b = 48.26^{\circ} \pm 0.03^{\circ}$
- But there might be other contributions to the dipole:
 - Isocurvature CMB dipole; dipolar lensing; etc.
- How to tell these contributions apart?

Doppler & Aberration

- The CMB dipole

 → Doppler effect
- But peculiar motion produces also aberration!

Doppler & Aberration

- But peculiar motion produces also aberration!
 - Aberration $\rightarrow \ell \leftrightarrow \ell+1$ correlations in the $a_{\ell m}$'s

Doppler & Aberration

Notari, Quartin 1112.1400 (JCAP)

Results: S/N

Experiment	$f_{ m sky}$	S/N
WMAP (9 years)	78%	0.7
EBEX	1%	0.9
Planck (2.5 years)	80%	5.9
SPT SZ	6%	2.0
SPTPol (3 years)	1.6%	2.5
ACTPol (1 year)	10%	4.4
ACTPol + (4 years)	40%	8.8
COrE (4 years)	80%	14
EPIC 4K	80%	16
EPIC 30K	80%	13
Ideal $(\ell \le 6000)$	100%	44

The SNe Dipole

CMB dipole → SNe dipole

$$\mu(\theta) - \langle \mu \rangle \approx \frac{5}{\log[10]} \beta \cos \theta \left[1 + \frac{c(1+z)}{\chi(z)H(z)} \right]$$

LSST: $z_{SNe} \in [0.1, 0.8] \rightarrow \mu(\theta) - \langle \mu \rangle \sim 10^{-2} \cos \theta$

$$\frac{\text{Signal}}{\text{Noise}} \sim 5 \times 10^{-2} \sqrt{N_{\text{SNe}}} \approx \begin{cases} 13, \ 10^5 \, \text{SNe} \\ 40, \ 10^6 \, \text{SNe} \end{cases}$$

Conclusions

- LSST SNe can:
 - Detect anisotropic curvature (SNe only)
 - Unless $|\Omega_{
 m k0}|\ll 0.01$ $N_{
 m SNe}\gtrsim rac{20}{\Omega_{
 m k0}^2}$
 - Detect our peculiar velocity
 - SNe → S/N ~ 13 40
 - CMB \rightarrow S/N \sim 6 14 (but different z)
 - We can finally measure the intrinsic dipole!
- LSST BAO can also be used to measure anisotropies

More Conclusions

- LSST weak lensing \rightarrow can also be used \rightarrow *to do list*
- LSST → anisotropy constraints competitive & complementary with CMB (peak pos. & correlations)
- Inhomogeneity & Anisotropy must be better constrained
 - We want cosmology with both precision & accuracy
 - FLRW less symmetric than static universe
 - Are we taking supposed symmetries too seriously???

Bom Apetite!

CMB Correlations as a Tool

- Statistical isotropy of the CMB is broken for:
 - Anisotropic models produce analogous correlations in the CMB. For example:
 - A preferred direction
 - A preferred "orientation" (an arrow)
 - Models with non gaussianity
- Similar estimators can be built to test these models

Observational Effects – CMB

- The CMB is isotropic at the background level
- CMB is therefore sensitive only to perturbations
 - Full perturb. equations recently derived in LRS metrics

Tom Zlosnik 1107.0389

- FRW → harmonic decomposition associated with a 3+1 split of spacetime
 - Scalars, Vectors and Tensors → independent
- LRS → standard 3+1 leads to mode mixing
 - Better \rightarrow 2+2 split: $M = R^2 \times S^2$ or $M = R^2 \times H^2$
 - Different modes (polar & axial) but no mixing

Results: Measuring β

A Particular Example

Consider a canonical 2-form B_{ab} (a Kalb–Ramond field)
 such that

$$S_B = \alpha \int J_{abc} J^{abc} \sqrt{-g} \, d^4 x$$

$$J_{abc} \equiv 3! \nabla_{[a} B_{bc]}$$

We also make the ansatz (only 1 deg. of freedom):

$$J_{abc} = f(t)\epsilon_{adbc} V^d$$

preferred direction

A Particular Example (2)

We have an imperfect fluid:

$$T_{ab}^B = \rho_B U_a U_b + P_B h_{ab} + L_B V_a V_b$$

The SIGA condition [a(t) = b(t)] is written as:

$$\frac{k}{a^2} = -\alpha J_{abc}J^{abc} = 6 (\alpha) \frac{C^2}{a^2}$$
 lagrangian parameter const. of integration

a_{lm} Correlations

Aberration $\rightarrow a_{\ell_m}$ correlations between different ℓ 's

$$a_{\ell m}^{X\,[{
m Aberrated}]} = \sum_{\ell'=0}^{\infty} K_{\ell'\ell m}^{X} a_{\ell'm}^{X\,[{
m Primordial}]}$$

$$K_{\ell'\ell m}^T = \int_{-1}^1 \frac{\mathrm{d}x}{\gamma (1 - \beta x)} \tilde{P}_{\ell'}^m(x) \tilde{P}_{\ell}^m \left(\frac{x - \beta}{1 - \beta x}\right)$$

- For E and B polarization the integrals are similar
- These integrals present a numerical challenge!

a_{lm} Correlations (2)

- Previous solution for computing $K_{\ell' \ell m} \to Taylor$ expansion in $\beta \to becomes effectively exp. in <math>\beta \ell$
 - $\mathbf{a}_{\ell m}$ correlations between ℓ and $\ell+n$ are $\mathcal{O}(\beta\ell)^n$
 - Expansion breaks down for $\ell > 800$!

Kosowski & Kahniashvili 1007.4539 (PRL)

Amendola, Catena, Masina, Notari, Quartin, Quercellini 1008.1183 (JCAP)

- We propose 2 better solutions:
 - Very accurate fitting functions for $K_{\ell'\ell m}$
 - An altogether new approach: *pre-deboost* the CMB

Measuring β

- These predicted correlations
 - Do not affect the angular power spectrum (the C_{ℓ} 's)
 - Break statistical isotropy of the CMB

$$\langle a_{\ell m} \, a_{\ell' m'} \rangle \neq C_{\ell} \, \delta_{\ell \ell'} \, \delta_{m m'}$$

- We can build an estimator for β
 - Since all ℓ 's are affected: more ℓ measured → better S/N
 - Measuring EE, ET, TE and BB power spectra \rightarrow better S/N
 - Better S/N \leftrightarrow more accurate measurement of β
 - Planck (30 months): $\ell_{\text{max}}^{\text{T}} \sim 2500$; $\ell_{\text{max}}^{\text{E,B}} \sim 1700$

Geodesics in LRS metrics

