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Dark Energy in 2 slidesDark Energy in 2 slides

 Observational evidence for dark energy:Observational evidence for dark energy:
 Cosmic Background Radiation (CMB)    →Cosmic Background Radiation (CMB)    → Nobel Prize 2006Nobel Prize 2006
 Supernovae    →Supernovae    → Nobel Prize 2011Nobel Prize 2011
 Matter power spectrum in large scale structureMatter power spectrum in large scale structure
 Age of the Universe  >  age of oldest starsAge of the Universe  >  age of oldest stars
 Baryon Acoustic OscillationsBaryon Acoustic Oscillations

 A flat universe with only A flat universe with only standard model particlesstandard model particles +  + 
dark matterdark matter cannot explain  cannot explain anyany of the above! of the above!



  33

Dark Energy Dark Energy 
in 2 slidesin 2 slides

 N.B.:  BAO    →N.B.:  BAO    →
Baryon Acoustic Baryon Acoustic 
Oscillations   ↔Oscillations   ↔
matter power matter power 
spectrumspectrum

­m + ­¤ = 1¡ ­k :

:
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Homogeneity  and  IsotropyHomogeneity  and  Isotropy
 The most basic (and old) tenets of cosmologyThe most basic (and old) tenets of cosmology

 Friedmann (Lemaître) Robertson Walker (FRW) metric:Friedmann (Lemaître) Robertson Walker (FRW) metric:
 most general homogeneous and isotropic metricmost general homogeneous and isotropic metric
 overwhelmingly successful at describing the universe in overwhelmingly successful at describing the universe in 

large-scaleslarge-scales
 ConsistentConsistent with all current observations with all current observations

 Hard to probe directly  →Hard to probe directly  → lightconelightcone vs.  vs. const. timeconst. time slices: slices:
 Possibility Possibility →→ more exotic models may also be  more exotic models may also be consistentconsistent  

with datawith data
 e.g.: void models;e.g.: void models; anisotropic curvature modelsanisotropic curvature models
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Homogeneity?Homogeneity?
 LTB metric (spher. symmetric, inhomogeneous)  Gpc →LTB metric (spher. symmetric, inhomogeneous)  Gpc →

Void modelsVoid models

 SurprinsinglySurprinsingly successful as an accelerating model without  successful as an accelerating model without 
Dark Energy;Dark Energy;

 Can fit all observations Can fit all observations on the light coneon the light cone SNe, BAO & CMB SNe, BAO & CMB
 But may fail for observationsBut may fail for observations  inside the light coneinside the light cone (kSZ,  (kSZ, 

redshift drift & CMB blackbody spectrum)redshift drift & CMB blackbody spectrum)

Quartin, Amendola  0909.4954 (PRD)
Caldwell, Stebbins  0711.3459 (PRL)Zhang, Stebbins 1009.3967 (PRL)

Marra, Notari  1102.1015 (CQG)
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Isotropy?Isotropy?

 People usually consider People usually consider 2 possibilities2 possibilities
 ShearShear
 VorticityVorticity

 But there is a 3But there is a 3rdrd type of anisotropy: (spatial)  type of anisotropy: (spatial) curvature curvature 
anisotropyanisotropy
 Basically: the 3-curvature can be different in different Basically: the 3-curvature can be different in different 

directionsdirections
 There exists aniso. curv. models which areThere exists aniso. curv. models which are

 HomogenousHomogenous
 IrrotationalIrrotational
 Shear-freeShear-free

 Are we taking supposed symmetries Are we taking supposed symmetries too seriouslytoo seriously??????

Koivisto, Mota, Quartin, Zlosnik  
1006.3321 (PRD)
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LRS MetricsLRS Metrics

 We focus on this Locally Rotationally Symmetric (We focus on this Locally Rotationally Symmetric (LRSLRS) ) 
axi-symmetricaxi-symmetric and  and homogeneoushomogeneous class of metrics class of metrics

 k > 0: Kantowski-Sachs metric  (k > 0: Kantowski-Sachs metric  (RR22  xx S S22)      )      SS22: 2-sphere: 2-sphere
 k = 0: Bianchi I  metric               k = 0: Bianchi I  metric                 ((RR22  xx R R22))
 k < 0: Bianchi III  metric             (k < 0: Bianchi III  metric             (RR22  xx H H22)     )     HH22: 2-hyperboloid: 2-hyperboloid

ds2 = ¡dt2 + a2(t) dy2 + b2(t)

·
d»2 +

1

jkjS
2(
p

jkj»)dÁ2
¸

::

:

S(x) ´ fsin(x); x; sinh(x)g for fk > 0; k = 0; k < 0g
:

:
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LRS Metrics  (2)LRS Metrics  (2)

 These models exhibit a These models exhibit a preferred directionpreferred direction
 E.g.: k > 0  (→E.g.: k > 0  (→ RR22 x  x SS22)  →)  → RR (time) x ( (time) x (RR x  x SS22))

 For simplicity, we assumeFor simplicity, we assume
 No shear!No shear!
 We can then write:We can then write:

S(x) ´ fsin(x); x; sinh(x)g for fk > 0; k = 0; k < 0g
:

:

ds2 = ¡dt2 + a2(t)

·
dÂ2 + Â2dµ2 +

1

jkjS
2
³p

jkjÂsinµ
´
dÁ2

¸

:

:
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The “SIGA” ConditionThe “SIGA” Condition

 ∃∃    anisotropic models with an isotropic expansionanisotropic models with an isotropic expansion
 Imperfect fluidImperfect fluid

 SIGA  SIG + A = Shearless Irrotational Geodesic (SIG) →SIGA  SIG + A = Shearless Irrotational Geodesic (SIG) →
models with Anisotropymodels with Anisotropy

anisotropic stress
electric part of 
the Weyl tensor

Mimoso & Crawford 
CQG 10 (1993) 315

¼ab = 2Eab :
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Particular ExamplesParticular Examples

 There are “simple” models that achieve the SIGA cond.There are “simple” models that achieve the SIGA cond.
 a canonical 2-form Ba canonical 2-form Babab (a Kalb–Ramond field) (a Kalb–Ramond field)
 a min-coupled, inhomogeneous massless scalar fielda min-coupled, inhomogeneous massless scalar field

 preliminary results  SIGA condition is →preliminary results  SIGA condition is → stablestable

 More interesting  →More interesting  → phenomenologyphenomenology of anisotropic curv. of anisotropic curv.
 In general  not too much model dependent→In general  not too much model dependent→

Carneiro & Mena Marúgan 
gr-qc/0109039 (PRD)

Koivisto, Mota, Quartin, Zlosnik  
1006.3321 (PRD)
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Observational EffectsObservational Effects
((i.e.i.e. “So what?”) “So what?”)

 LRS metrics  spatial sections contain both flat and →LRS metrics  spatial sections contain both flat and →
curved surfaces curved surfaces 

 SIGA condition  isotropic expansion + aniso. curvature→SIGA condition  isotropic expansion + aniso. curvature→
 H(t)H(t),  redshift ,  redshift zz  &  comoving distances    →  &  comoving distances    → isotropicisotropic
 Angular diameter  &  luminosity dist.    →Angular diameter  &  luminosity dist.    → anisotropicanisotropic
 N.B.: there are 2 types of angular diameter distancesN.B.: there are 2 types of angular diameter distances

 1-D:  1-D:  dd1A1A    ≡≡  length / angle  length / angle

 2-D:  2-D:  dd2A2A    ≡≡  area / solid angle     area / solid angle   
d
2A

 is related to d
L
 by the 

Reciprocity Theorem
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Angular diameter dist. dAngular diameter dist. d
2A2A

 dd2A2A    ≡≡  area / solid angle  area / solid angle

 Compare with the FRW one:Compare with the FRW one:

d2A(µ)
2 =

a2(t)Â

H0

p
2 j­k0j

S
³
H0

p
2 j­k0jÂ sinµ

´

sinµ

¯̄
¯̄
¯̄ :

£
dFRWA

¤2
=

a2(t)

H0
2 j­k0j

S2
³
H0

p
j­k0jÂ

´¯̄
¯̄
:

:

S(x) ´ fsin(x); x; sinh(x)g :
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Observational Effects – Observational Effects – 
SummarySummary

 The CMB is The CMB is isotropicisotropic at the background level at the background level
 CMB is therefore sensitive only to CMB is therefore sensitive only to perturbationsperturbations

 Full perturb. equations Full perturb. equations recently derivedrecently derived in LRS metrics in LRS metrics

 Correlations between  Correlations between  ℓ ℓ    ↔   ↔ ℓℓ+2  in the a+2  in the aℓℓmm’’ss

 BAO:  BAO:  2 kinds of BAO: 2 kinds of BAO: radialradial &  & transversaltransversal
 Radial  measure comoving dist. (isotropic)→Radial  measure comoving dist. (isotropic)→
 Transversal  measure ang. diam. dist. (anisotropic)→Transversal  measure ang. diam. dist. (anisotropic)→

 SNe, weak-lensing, and more???SNe, weak-lensing, and more???

Tom Zlosnik  1107.0389

Graham, Harnik, Rajendran 1003.0236 (PRD)
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Observational Effects – SNeObservational Effects – SNe

 The angular diameter distance has an angular The angular diameter distance has an angular 
dependence  so will SNe magnitudes!→dependence  so will SNe magnitudes!→

 SNe data  Look for a preferred direction→SNe data  Look for a preferred direction→
 Currently: ~10Currently: ~1033 SNe measured SNe measured

 Near future: Near future: ~~101044  SNeSNe    DESurvey  +  SN Factory  +  SN →    DESurvey  +  SN Factory  +  SN →
Legacy Survey  +  Pan-STARRS  +  PAU  +  J-PAS  ...Legacy Survey  +  Pan-STARRS  +  PAU  +  J-PAS  ...

 Around 2020: Around 2020: ~105 SNe / year SNe / year     →   → LSST aloneLSST alone
 Effective # depend on contamination / photo-z / etc.Effective # depend on contamination / photo-z / etc.

 But... error bars are already dominated by But... error bars are already dominated by systematicssystematics
 Huge efforts needed to understand / control systematics!Huge efforts needed to understand / control systematics!

Review of SNe:  Howell,  1011.0441  (Nature Comm.)



  1515

SNe SystematicsSNe Systematics
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SNe Discovery is now SNe Discovery is now 
CommonplaceCommonplaceSN2010lt

The 10-year oldThe 10-year old



  1717

SNe Results   SNe Results   (“SALT2”)(“SALT2”)

 Results depend on fiducial metric!Results depend on fiducial metric!

Dashed  FRW / → ΛCDM
Colors   Aniso. Curv.→
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SNe Results (2)SNe Results (2)

 Any preferred direction in the Any preferred direction in the UnionUnion catalog? (300 SNe) catalog? (300 SNe)

 Interpretation Interpretation notnot straightforward! straightforward!
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SNe Results (3)SNe Results (3)

 Any preferred direction in the Any preferred direction in the Union2Union2 catalog? (500 SNe) catalog? (500 SNe)

 Interpretation Interpretation notnot straightforward! straightforward!
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SNe ForecastsSNe Forecasts

 We generated some SNe mock catalogsWe generated some SNe mock catalogs
 Two goals:Two goals:

 How many SNe are needed to detect a preferred directionHow many SNe are needed to detect a preferred direction
 Better interpret current resultsBetter interpret current results

 S/N  >  3    →S/N  >  3    →

¹LRS ¡ ¹FRW ¼ ¡0:4H2
0 Â

2(z)­k0 cos
2 µ +O

¡
­k0

2
¢

:

Signal

Nojse
» 0:6­k0

p
NSNe :

NSNe &
20

­k02

¯̄
¯̄
:
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SNe ForecastsSNe Forecasts

 Assumptions:Assumptions:
 Only statistical errors Only statistical errors 

consideredconsidered
 Fiducial  Fiducial  ΩΩk0k0 = – 0.1 = – 0.1
 All-sky coverageAll-sky coverage

 Top: 1000 SNeTop: 1000 SNe

 Middle: 3000 SNeMiddle: 3000 SNe

 Bottom: 10000 SNeBottom: 10000 SNe
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Ongoing workOngoing work

 Separate the observable effects of Separate the observable effects of aniso. curv.aniso. curv. &  & shearshear

 Study BAO    In principle very useful here:→Study BAO    In principle very useful here:→
 But: need to re-derive BAO in LRS metricsBut: need to re-derive BAO in LRS metrics

 CMB peak-positions anisotropyCMB peak-positions anisotropy

 Weak-lensing  intrinsic ellipticity→Weak-lensing  intrinsic ellipticity→

 (maybe...) explore full perturbation equations(maybe...) explore full perturbation equations

Nunes, Quartin, Zlosnik  (in prep)
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Precision CosmologyPrecision Cosmology
vs.vs.

Accurate CosmologyAccurate Cosmology

1%
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The CMB DipoleThe CMB Dipole

 CMB Temperature:  CMB Temperature:  

 Spherical Harmonics decomposition:Spherical Harmonics decomposition:

 ℓ ℓ = 0  monopole→= 0  monopole→
 ℓℓ  = 1  →= 1  → dipole: dipole: ~~  10 10 – 3– 3

 ℓℓ  = 2  quadrupole: ~ →= 2  quadrupole: ~ → 10 10 – 5– 5

 ℓℓ  > 2  all ~→> 2  all ~→  10  10 – 5– 5

TCMB = 2:725K

·
1 +

¢T (µ; Á)

T

¸ ¯̄
¯̄
:
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The CMB Dipole  (2)The CMB Dipole  (2)

 The CMB dipole ~ 100 times larger than other multipolesThe CMB dipole ~ 100 times larger than other multipoles
 Reason: Doppler effect due to our peculiar motionReason: Doppler effect due to our peculiar motion

 CMB dipole  measurement of v→CMB dipole  measurement of v→ CMBCMB

 vvCMBCMB  ≈≈  370 km/s370 km/s    →    → ββ  ≡≡ v/c = v/c =  1.231  101.231  10  – 3– 3

 direction   l = 263.99→direction   l = 263.99→ °°  ±± 0.14 0.14°°;  b = 48.26;  b = 48.26°°  ±± 0.03 0.03°°

 But there might be other contributions to the dipole:But there might be other contributions to the dipole:
 Isocurvature CMB dipole; dipolar lensing; etc.Isocurvature CMB dipole; dipolar lensing; etc.

 How to tell these contributions apart?How to tell these contributions apart?
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Doppler & AberrationDoppler & Aberration

 The CMB dipole    Doppler effect↔The CMB dipole    Doppler effect↔
 But peculiar motion produces also But peculiar motion produces also aberrationaberration!!
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Doppler & AberrationDoppler & Aberration

 But peculiar motion produces also But peculiar motion produces also aberrationaberration!!
 Aberration  →Aberration  →   ℓ ℓ    ↔   ↔ ℓℓ+1  correlations in the a+1  correlations in the aℓℓmm’’s  s  
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Doppler & AberrationDoppler & Aberration

¯ = 0:5 :¯ = 0:9 :¯ = 0 :
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Results: S/NResults: S/N
Notari, Quartin 1112.1400 

(JCAP)
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The SNe DipoleThe SNe Dipole

 CMB dipole  SNe dipole→CMB dipole  SNe dipole→

 LSST:  zLSST:  zSNeSNe  ∈∈ [0.1, 0.8]   → [0.1, 0.8]   →
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 LSST SNe can:LSST SNe can:
 Detect anisotropic curvature  (SNe only)Detect anisotropic curvature  (SNe only)

 Unless |Unless |ΩΩk0k0||    0.01  0.01

 Detect our peculiar velocity Detect our peculiar velocity 
 SNe  S/N ~ 13 – 40→SNe  S/N ~ 13 – 40→
 CMB  S/N ~ 6 – 14   (but different z)→CMB  S/N ~ 6 – 14   (but different z)→
 We can We can finallyfinally measure the intrinsic dipole! measure the intrinsic dipole!

 LSST BAO can also be used to measure anisotropiesLSST BAO can also be used to measure anisotropies

ConclusionsConclusions

NSNe &
20

­k02

¯̄
¯̄
:
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 LSST weak lensing    can also be used → →LSST weak lensing    can also be used → → to do list to do list

 LSST  anisotropy constraints competitive & →LSST  anisotropy constraints competitive & →
complementary with CMB (peak pos. & correlations)complementary with CMB (peak pos. & correlations)

 Inhomogeneity & Anisotropy must be better constrainedInhomogeneity & Anisotropy must be better constrained
 We want cosmology with both We want cosmology with both precisionprecision &  & accuracyaccuracy
 FLRW less symmetric than static universeFLRW less symmetric than static universe

 Are we taking supposed symmetries Are we taking supposed symmetries too seriouslytoo seriously??????

More ConclusionsMore Conclusions

Bom Apetite!
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CMB Correlations as a ToolCMB Correlations as a Tool

 Statistical isotropy Statistical isotropy of the CMB is broken for:of the CMB is broken for:

 Anisotropic models produce analogous correlations in the Anisotropic models produce analogous correlations in the 
CMB. For example:CMB. For example:
 A preferred directionA preferred direction
 A preferred “orientation” (an arrow)A preferred “orientation” (an arrow)

 Models with Models with non gaussianitynon gaussianity

 Similar estimators can be built to test these modelsSimilar estimators can be built to test these models
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Observational Effects – CMBObservational Effects – CMB

 The CMB is The CMB is isotropicisotropic at the background level at the background level
 CMB is therefore sensitive only to CMB is therefore sensitive only to perturbationsperturbations

 Full perturb. equations Full perturb. equations recently derivedrecently derived in LRS metrics in LRS metrics

 FRW   harmonic decomposition associated with a 3+1 →FRW   harmonic decomposition associated with a 3+1 →
split of spacetimesplit of spacetime
 Scalars, Vectors and Tensors  independent→Scalars, Vectors and Tensors  independent→

 LRS  standard 3+1 leads to →LRS  standard 3+1 leads to → mode mixingmode mixing
 Better  2+2 split:   →Better  2+2 split:   → M M = = RR22  × S× S22      or or     M M = = RR22  × H× H22

 Different modes (polar & axial) but no mixingDifferent modes (polar & axial) but no mixing

Tom Zlosnik  1107.0389
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Results: Measuring Results: Measuring ββ  

Ideal

COrE

EPIC 4K

Planck

ACTPol+

ACTPol

EPIC 30K

vCMB ≈ 370 km/s

Notari, Quartin (1112.1400)
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A Particular ExampleA Particular Example

 Consider a canonical 2-form BConsider a canonical 2-form Babab (a Kalb–Ramond field)  (a Kalb–Ramond field) 
such thatsuch that

 We also make the ansatz (only 1 deg. of freedom):We also make the ansatz (only 1 deg. of freedom):

preferred direction

SB = ®

Z

:

JabcJ
abcp¡g d4x :

Jabc ´ 3!r[aBbc]
:

:

Jabc = f(t)²adbc V
d :
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k

a2
= ¡®JabcJ

abc = 6 ®
C2

a2
:

:

A Particular Example  (2)A Particular Example  (2)

 We have an imperfect fluid:We have an imperfect fluid:

 The SIGA condition [The SIGA condition [a(t) = b(t)a(t) = b(t)]] is written as: is written as:

const. of integrationlagrangian parameter

TBab = ½BUaUb + PBhab + LBVaVb: :
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Aberration  →Aberration  → aaℓℓmm correlations between different   correlations between different  ℓ'sℓ's

 For For EE and  and BB  polarization polarization the integrals are similarthe integrals are similar
 These integrals present a numerical challenge!These integrals present a numerical challenge!

KT
`0 `m =

Z 1

¡1:

dx

° (1¡ ¯x)
~Pm`0 (x) ~P

m
`

µ
x¡ ¯

1¡ ¯x

¶
:

a
X [Aberrated]
`m =

1X

`0=0:

KX
`0 `m a

X [Primordial]
`0m ;

aaℓℓmm Correlations Correlations

Chluba 1102.3415 (MNRAS) Notari, Quartin (1112.1400)
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 Previous solution for computing Previous solution for computing KKℓ' ℓ m  ℓ' ℓ m   Taylor → Taylor →

expansion in expansion in β    becomes effectively exp. in βℓ→β    becomes effectively exp. in βℓ→
 aaℓℓmm correlations between   correlations between  ℓℓ  and    and  ℓ+nℓ+n  are    are  OO(βℓ)(βℓ)nn

 Expansion breaks down for  ℓ > ~800 !Expansion breaks down for  ℓ > ~800 !

   We propose 2 better solutions:We propose 2 better solutions:
 Very accurate Very accurate fitting functionsfitting functions for  K for  Kℓ' ℓ mℓ' ℓ m

 An altogether new approach: An altogether new approach: pre-deboostpre-deboost the CMB the CMB

aaℓℓmm Correlations  (2) Correlations  (2)

Notari, Quartin (1112.1400)

Amendola, Catena, Masina, Notari, Quartin, Quercellini  1008.1183 (JCAP)

Kosowski & Kahniashvili 1007.4539  (PRL)
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Measuring Measuring ββ

 These predicted correlationsThese predicted correlations
 Do not affect the angular power spectrum (the CDo not affect the angular power spectrum (the Cℓℓ's's))

 Break Break statistical isotropy statistical isotropy of the CMBof the CMB

 We can build an We can build an estimator estimator forfor  ββ  
 Since all  Since all  ℓ's are affected:  more ℓ measured  better S/N →ℓ's are affected:  more ℓ measured  better S/N →
 Measuring Measuring EEEE, , ETET, , TETE and  and BBBB power spectra  better S/N→ power spectra  better S/N→
 Better S/N    more accurate measurement of β↔Better S/N    more accurate measurement of β↔
 Planck (30 months):  Planck (30 months):  ℓℓTT

maxmax ~  2500 ~  2500 ;   ;  ℓℓE,BE,B
maxmax ~ 1700 ~ 1700

ha`m a`0m0i 6= C` ±``0 ±mm0 j:
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Geodesics in LRS metricsGeodesics in LRS metrics

λ

Graham, Harnik, Rajendran 
1003.0236 (PRD)
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