### Brazilian Large and Long Programs (BrLLP) Progress Report – 2016B

### The DIVING3D project: Deep IFS View of Nuclei of Galaxies

J. E. Steiner<sup>1</sup>, R. Cid Fernandes<sup>2</sup>, P. Coelho<sup>1</sup>, N. Vale Asari<sup>2</sup>, R. B. Menezes<sup>1</sup>, T. V. Ricci<sup>3</sup>, A. L. Amorim<sup>2</sup>, D. May<sup>1</sup>, Patricia da Silva<sup>1</sup>, Inaiara Andrade<sup>1</sup> & Maiara S. Carvalho<sup>2</sup>

Theses: Patricia da Silva<sup>1</sup>, Inaiara Andrade<sup>1</sup> & Maiara S. Carvalho<sup>2</sup>

<sup>1</sup>Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo, SP CEP 05508-090, Brazil

<sup>2</sup>Departamento de Física, Universidade Federal de Santa Catarina, PO Box 476, 88040-900, Florianópolis, SC, Brazil

<sup>3</sup>Universidade Federal da Fronteira Sul – Rua Jacob Reinaldo Haupenthal, 1580, sala 111, Cerro Largo RS, CEP 97900-000

### 1. Executive summary

The DIVING3D project - Deep IFS View of Nuclei of Galaxies – is one of the two Brazilian LLPs. By the end of 2016B it will be 70% completed. Additional time is requested to bring the degree of completion to 81%.

The main goals of this survey are to perform a study of the a) nuclear and b) circumnuclear emission of a complete sample of all galaxies brighter than B=12.0 in the southern hemisphere. As a by-product we will also obtain stellar c) kinematics and d) archaeology.

Although the El Nino phenomenon has affected badly the operations of Gemini South and 15 galaxies of the program were not observed in the semesters 2015B and 2016A, the sample of ETGs is now completed. For the mini-DIVING3D only 2 galaxies are missing and we expect them to be observed in the semester 2016B.

We are now in the situation of publishing papers with statistical analysis. The first three are in preparation.

So far we have published 7 papers on individual or small samples of galaxies. Two more papers have been submitted.

### 2. Work progress

Here, a detailed description of the work done in the semester related to LLP activities such as:

The data quality is, in general, very good. Although all data cubes have instrumental fingerprints, we have been able to remove them.

The signal-to-noise obtained for the emission line analysis is very good. For the stellar component of the central bulge it is quite appropriate. In two cases, at the edges of the FOV, we had deficit of s/n for analysing the stellar component, but this has not been a problem, given our objectives.

Only one object, NGC 4856, was not observed because of lack of guiding star. We will propose an observation with SOAR; either with SIFS or Goodman.

The wavelength calibration has been made very accurately. The flux calibration is not better then  $\sim 30\%$ .

All data cubes are submitted to the following procedures:

- Bias subtraction and flat-field correction
- Cosmic ray removal
- Wavelength calibration

- Sky subtraction
- Flux calibration
- Telluric absorption removal
- Correction for the differential atmospheric refraction (DAR).
- High frequency spatial noise removal with Butterworth filter
- Fingerprint removal
- Richardson-Lucy deconvolution

The data analysis is done with the following techniques:

- PCA Tomography
- Starlight spectral synthesis
- pPXF kinematic analysis, obtaining the Gauss-Hermite momenta

Software development

All software developed by our group in IDL is available in the site:

www.astro.iag.usp.br/~pcatomography

### 3. Recent results

The paper IV of the series on the 10 early type galaxies (ETGs) has been published. This paper is about the stellar kinematics and is available in the following link:

http://adsabs.harvard.edu/doi/10.1093/mnras/stw2318

Two additional papers have been submitted to the MNRAS; one reports the detection of a possible LBV/Hypergiant and Wolf-Rayet stars near the central cluster in the bulgeless galaxy NGC 1313. This paper is being revised and we are waiting for a second referee report.

A second paper with the title "Integral Field Unit Spectroscopy of the inner 1 kpc of the galaxy NGC 5044" by Suzi I.F. Diniz1, Miriani G. Pastoriza, Jose A. Hernandez-Jimenez, Rogerio Riffel1, Tiago V. Ricci, J. E. Steiner, Rogemar A. Riffel has also been submitted to MNRAS.

One of the main surprises of the data reduced so far is the frequency in which we find indications of past mergers:

- a) At least in two cases we see double or well elongated central bulges. Associated with this there is strong indication of stellar population with 1 Gyear.
- b) In two cases we see double AGN (~1" separation). In one case it is associated with a double central bulge.
- c) In one case there is a suggestion of a triple AGN (within 0.7")
- d) In two cases we see off-centered AGN. Perhaps this indicates the ejection of the central black hole, as a consequence of black hole merger.

The fact that this is an IFU survey with unprecedented resolution and signal-to-noise, such unprecedented findings are not surprising.

Considering the central source, we can make a preliminary statistics and compare it to the Palomar survey. The result shows that we are looking much deeper and finding significantly more AGNs.

| Preliminary comparison with the Palomar Survey for massive ETGs ( $\sigma$ >200 km/s) |           |                |    |            |  |  |
|---------------------------------------------------------------------------------------|-----------|----------------|----|------------|--|--|
| Туре                                                                                  | Palom     | Palomar Survey |    | NG3D       |  |  |
| •                                                                                     | Nr        | %              | Nr | %          |  |  |
| No Em.                                                                                | 19        | 33%            | 3  | 9%         |  |  |
| L1.9                                                                                  | 6         | 11%            | 10 | 31%        |  |  |
| Lb?                                                                                   | 0         | 0%             | 6  | 19%        |  |  |
| S1.5                                                                                  | 1         | 2%             | 2  | 6%         |  |  |
| T1.9:                                                                                 | 1         | 2%             | 0  | 0%         |  |  |
| S2                                                                                    | 0         | 0%             | 0  | 0%         |  |  |
| S2:                                                                                   | 1         | 2%             |    |            |  |  |
| L2                                                                                    | 8         | 14%            | 4  | 13%        |  |  |
| L2::                                                                                  | 6         | 11%            | 7  | 22%        |  |  |
| T2                                                                                    | 2         | 4%             |    |            |  |  |
| T2:                                                                                   | 7         | 12%            |    |            |  |  |
| H:                                                                                    | 1         | 2%             | 0  | 0%         |  |  |
| T2/L2-S2:                                                                             | 4         | 7%             |    |            |  |  |
| S2/L2                                                                                 | 1         | 2%             |    |            |  |  |
| Total                                                                                 | 57        | 100%           | 32 | 100%       |  |  |
|                                                                                       |           |                |    |            |  |  |
| N. E.                                                                                 | 10        | 220/           | 2  | 0.0/       |  |  |
| No Em.                                                                                | <i>19</i> | 33%            | 3  | 9%<br>5<00 |  |  |
| L b/Sy b                                                                              | 8         | 14%            | 18 | 56%        |  |  |
| S2/L2/T2                                                                              | 29        | 51%            | 11 | 34%        |  |  |

We believe that a significant number of papers in individual objects will be published. The main goal, however is, at the end, publish statistical analysis on:

- The ETGs
- Early-type galaxies
- Milky Way Twins
- Late-type galaxies

Our perspective is that in all cases we will address:

- Nuclear emission line properties
- Circumnuclear emission line properties
- Stellar archaeology
- Stellar kinematics

### 4. Overall status

The current membership of the project is:

Joao Steiner: Coordinator

Roberto Menezes: reduction, data processing and analysis. Emission line properties of the mini-DIVING3D. Tiago Ricci: reduction and data processing and analysis. Priority on ETG galaxies.

Roberto Cid Fernandes, Natália do Vale e André Amorin: Spectral synthesis and stellar archaeology. Paula Coelho: Spectral libraries; alfa enhancement.

Theses:

Patricia da Silva: the master thesis was concluded and she has started her PhD thesis, following the work on Sbc galaxies (Milky Way twins).

Inaiara Andrade: her PhD thesis focuses on IFU spectroscopy of nuclei of S0 galaxies. Maiara S. Carvalho: her master thesis focuses on stellar archaeology of the mini-DIVING3D.

External collaboration:

One paper in collaboration with the RS group was submited: Integral Field Unit Spectroscopy of the inner 1 kpc of the galaxy NGC 5044 Suzi I.F. Diniz1, Miriani G. Pastoriza, Jose A. Hernandez-Jimenez, Rogerio Riffel1, Tiago V. Ricci, J. E. Steiner, Rogemar A. Riffel

An additional paper is being prepared with Rogério Riffel, Rogemar Riffel and Gabriel Hahn in which the GMOS data of the galaxy NGC 1052 will be combined with their NIFS data.

### 5. Observing plan and data release

The current observing strategy is to observe sub-samples as listed below.

### **Observational strategy**

### Sub-samples

The observational status of the subsamples, by the end of semester 2016B, will be:

| Sub-sample                                                      | Obs | Unobs | Total |
|-----------------------------------------------------------------|-----|-------|-------|
| $1 - \text{High-mass} (\sigma > 200 \text{ km/s}) \text{ ETGs}$ | 32  | 0     | 32    |
| 2 – Low-mass ( $\sigma$ <200 km/s) ETGs                         | 29  | 1     | 30    |
| 3 – Early type (Sa-Sb) spiral galaxies                          | 14  | 22    | 36    |
| 4 – Milky Way twins                                             | 20  | 3     | 23    |
| 5 – Late type (Sc-Sd) spiral galaxies                           | 25  | 24    | 49    |
| Total                                                           | 119 | 51    | 170   |

The degree of completion, per subsample, by the end of the semesters 2016A, 2016B and 2017A will be:

| Priority                                      | Completion degree |      |      |  |  |
|-----------------------------------------------|-------------------|------|------|--|--|
|                                               | 16A               | 16B  | 17A  |  |  |
| 1 – High –mass ETGs                           | 100%              | 100% | 100% |  |  |
| 2 – Bright (B<11.0) Mini-DIVING <sup>3D</sup> | 93%               | 100% | 100% |  |  |
| 3 – Low-mass ETGs                             | 80%               | 100% | 100% |  |  |
| 4 – Milky Way twins                           | 74%               | 89%  | 96%  |  |  |
| 5 – Early type spirals                        | 33%               | 39%  | 64%  |  |  |
| 6 – Late type spirals                         | 45%               | 51%  | 61%  |  |  |
| Total                                         | 63%               | 70%  | 81%  |  |  |

This means that, by the end of 2016B, we will have a degree of completion of 100% for the sub-samples High-mas ETGs, Low-mass ETGs and Mini-DIVING 3D.

It is very important to notice that the two semesters B were not completed, as shown in the following table. The program DIVING3D was approved in Nov/2013 and the time allocated by semester was:

| Semester       | time  | observed | not observed |
|----------------|-------|----------|--------------|
| 2014A          | 8.5hs | 7        | 0            |
| 2014R<br>2014B | 17hs  | 9        | 7            |
| 2015A          | 21hs  | 20       | 0            |
| 2015B          | 21.6  | 12       | 8            |
| 2016A          | 17hs  | 8        | 7            |

In the semester 2014B, 7 galaxies were not observed due to an operational mistake by the Gemini Observatory. In 2015B, 8 galaxies were not observed because of the bad weather due to the strong El Niño phenomenon. In the semester 2016A, 7 galaxies were not observed due to the El Nino phenomenon.

The proposed objects for the remaining semesters are:

2017A - 17.04h NGC 3887, NGC 3672, NGC 4487, NGC 7083, NGC 7552, NGC 4593, NGC 7496, NGC 3223, NGC 5170, NGC 5556, NGC 4818, NGC 4902, NGC 4941, NGC 4995, NGC 5334, IC 5273 2017B - 17.04h IC 5332, NGC 1448, NGC 1512, NGC 1350, NGC 7582, NGC 578, NGC 1042, NGC 1371, NGC 1637, NGC 1532, NGC 7727, NGC 1087, NGC 1425, NGC 1964, NGC 1385, NGC 7713 2018A - 8.23h NGC 6118, NGC 4504, NGC 6753, NGC 5584, NGC 5161, NGC 5530, NGC 3513 2018B - 10.65h

NGC 210, NGC 1744, NGC 150, NGC 986, NGC 1249, NGC 1493, NGC 2090, NGC 7723, NGC 779, NGC 685

#### The Legacy strategy

Our commitment is to deliver the data to the Brazilian Astronomical Community. The idea is to give access to our community not only to the raw data (available after 1 year anyway) but also the reduced and the processed data. For this reason we will deliver two data cubes for each galaxy:

A – One data-cube with all spectra:

- Wavelength calibrated
- Flux calibrated
- Corrected for the differential atmospheric refraction (DAR).
- Removal of high frequency spatial noise with Butterworth filter
- Fingerprint removed

B – One additional cube will be available to the community with the additional data processing:

Richardson-Lucy deconvolution

The data has been located in the projects' site ("DIVING3D" in CLOUD-USP). Due to budgetary restrictions, the University is not allowing any more such a use. The new site is being prepared in the VO server at IAG. In the meantime any data can be requested to Tiago Ricci: tvricci@iag.usp.br or

Roberto Menezes: Roberto.menezes@iag.usp.br

As suggested by the NTAC we contacted LNA and the idea is to locate temporarily the archive in the VO server at IAG with a mirror in the LNA server. The idea is to minimize the labor for LNA staff. Perhaps in the future this can be change, as long as the labor of maintaining the archive is responsibility of the DIVING3D group and not of the LNA. This has been agreed with Dr. Alberto Ardila.

We plan to deliver the data releases six months after each of the subsample is completed. The next release will be in 2017A for the subsample "Low-mass ETGs". The "Mini-DIVING3D" will be completed in 2016B and, if the two remaining galaxies are observed, this sample will be released 6 months later.

### 6. Publications

Menezes, R. B., Steiner, J. E., Ricci, T. V. 2013 Ap J 765, L40 Collimation and Scattering of the Active Galactic Nucleus Emission in the Sombrero Galaxy

Ricci, T. V., Steiner, J. E. & Menezes, R. B. 2014 MNRAS 440, 2429 – Paper I Integral field unit spectroscopy of 10 early-type galactic nuclei - I. Principal component analysis Tomography and nuclear activity

Ricci, T. V., Steiner, J. E. & Menezes, R. B. 2014 MNRAS 440, 2442 – Paper II IFU spectroscopy of 10 early-type galactic nuclei - II. Nuclear emission line properties

Menezes, R. B., Steiner, J. E. & Ricci, T. V. 2014 Ap J Lett 796, L13 An off-centered active galactic nucleus in NGC 3115

Ricci, T. V.; Steiner, J. E.; Menezes, R. B. 2015 MNRAS 451, 3728 IFU spectroscopy of 10 early-type galactic nuclei - III. Properties of the circumnuclear gas emission.

R. B. Menezes, J. E. Steiner and Patrícia da Silva 2016, Astrophysical Journal 817, 150 The off-centered Seyfert-like compact emission in the nuclear region of NGC 3621

IFU spectroscopy of 10 early-type galactic nuclei - IV. Properties of the circumnuclear stellar kinematics <u>http://adsabs.harvard.edu/doi/10.1093/mnras/stw2318</u>

### The following papers are submitted for publication:

The emission-line regions in the nucleus of NGC 1313 probed with GMOS-IFU: Wolf-Rayet stars and a B[e]/LBV candidate. R. B. Menezes and J. E. Steiner submitted to MNRAS, 2016

Integral Field Unit Spectroscopy of the inner 1 kpc of the galaxy NGC 5044 Suzi I.F. Diniz, Miriani G. Pastoriza, Jose A. Hernandez-Jimenez, Rogerio Riffel1, Tiago V. Ricci, J. E. Steiner, Rogemar A. Riffel – submitted to MNRAS.

# - Separately papers published by the group, which are related to the LLP (at least in terms of IFU methodology) and that did not make use of the LLP data.

Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S. Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission 2009 MNRAS.396, 788

Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S. PCA Tomography: how to extract information from data cubes 2009 MNRAS 39, 64

Oliveira, A. S.; Steiner, J. E.; Ricci, T. V.; Menezes, R. B.; Borges, B. W. Optical identification of the transient supersoft X-ray source RX J0527.8-6954, in the LMC 2010 A&A 517, L5

Ricci, T. V.; Steiner, J. E.; Menezes, R. B. NGC 7097: The Active Galactic Nucleus and its Mirror, Revealed by Principal Component Analysis Tomography 2011 ApJ 734 L10

Steiner, J. E.; Menezes, R. B.; Amorim, Daniel Identification of a high-velocity compact nebular filament 2.2 arcsec south of the Galactic Centre 2013 MNRAS 431, 2789

Menezes, R. B.; Steiner, J. E.; Ricci, T. V. Collimation and Scattering of the Active Galactic Nucleus Emission in the Sombrero Galaxy 2013 ApJ 765 L40

Menezes, R. B.; Steiner, J. E.; Ricci, T. V. Discovery of an H $\alpha$  Emitting Disk around the Supermassive Black Hole of M31 2013 ApJ 762 L29

Menezes, R. B., Steiner, J. E. & Ricci, T. V. 2014, MNRAS 438, 2597 A treatment procedure for Gemini North/NIFS data cubes: application to NGC 4151

Ricci, T. V.; Steiner, J. E.; Giansante, L. 2015 A&A 576, 58 A hot bubble at the centre of M81

Menezes, R.B., da Silva, P., Ricci, T.V., Steiner, J. E. & May, D., 2015 MNRAS 450, 369 A treatment procedure for VLT/SINFONI data cubes: application to NGC 5643

Menezes, R. B. & Steiner, J. E. 2015 Astrophysical Journal 808, 27 The molecular H2 emission and the stellar kinematics of the nuclear region of the Sombrero Galaxy.

May, D., Steiner, J. E., Ricci, T.V., Menezes, R.B, & Andrade, I.S. 2016 MNRAS 457, 949 Digging process in NGC 6951: the molecular disc bumped by the jet

All publications up to now have treated individual or small (~10 objects) samples. Now that the ETGs have been observed (and soon the mini-DIVING3D), we plan the first three statistical papers:

Paper I: The DIVING3D Project: sample definition, strategy and early results. Paper II: The DIVING3D Project: nuclear emission line properties of Early Type Galaxies. Paper III: The DIVING3D project: Statistical analysis of the complete sample of B<11.0 galaxies.

#### - Thesis or dissertation work finished that are related to the LLP.

Roberto Menezes (2012): Methodology development for the program Tiago Ricci (2013): 10 early type galaxy studies, including some from the DIVING3D Patrícia da Silva (April 2016): Analysis of 4 SBsc galaxies (Milky Way twins).

### 7. Response to NTAC questions

Include here the responses to the specific questions raised by the NTAC.

The NTAC recommends that the reduced data should be made available on a www server, preferably by the LNA.

As suggested by the NTAC we contacted LNA and the idea is to locate temporarily the archive in the VO server at IAG with a mirror in the LNA server. The idea is to minimize the labor for LNA staff. Perhaps in the future this can be change, as long as the labor of maintaining the archive is responsibility of the DIVING3D group and not of the LNA. This has been agreed with Dr. Alberto Ardila.

The committee noticed that in the last report there is a contradictory information stating that "...deliver the next data releases one year after each of the subsample is completed"; this should comply with the original plan (LLP proposal), that the data will be released 6 months after the data being processed.

We agree and the statement has been corrected. We plan to release the next two subsamples (Low-mass ETGs and mini-DIVING3D) in 2017A.

### 8. Additional material (optional)

Appendix A - Status of each object/subsample

### 1 - The sub-sample of high-mass ( $\sigma$ >200 km/s) ETGs

| Name        | Sem./<br>Red. | Type<br>NED | B<br>mag | d<br>Mpc |           | gr/clust | AddObs             |
|-------------|---------------|-------------|----------|----------|-----------|----------|--------------------|
| Ellipticals |               |             | U        | 1        |           |          |                    |
| NGC 1316    | 13B/R         | E4          | 9.6      | 20       | SAB0^0(s) | Forn A   | SINFONI; ACS/WFPC2 |
| NGC 1549    | 13B/R         | E0-1        | 10.76    | 16       |           | Dor gr   |                    |
| NGC 1399    | 08B/T         | cD          | 10.79    | 18       |           | Forn cl  | SINFONI; ACS/WFPC2 |
| NGC 3923    | 13A/T         | E4-5        | 10.91    | 21       |           |          | ACS                |
| NGC 1407    | 13B/R         | E0          | 10.93    | 23       |           | Erid cl  | ACS                |
| NGC 3585    | 13A/T         | E6          | 10.93    | 18       |           |          | ACS/WFPC2          |
| IC 1459     | 08B/T         | E3-4        | 10.96    | 27       |           |          | WFPC2              |
| NGC 1404    | 08B/T         | E1          | 11.04    | 19       |           | Forn cl  | ACS/WFPC2          |
| NGC 720     | 13B/T         |             | 11.15    | 24       |           |          |                    |
| NGC 1395    | 13B/R         |             | 11.18    | 21       |           |          |                    |
| NGC 584     | 13B/T         |             | 11.2     | 20       |           |          | WFPC2              |
| NGC 7507    | 13B/T         |             | 11.43    | 22       |           |          |                    |
| NGC 3557    | 13A/T         |             | 11.46    | 37       |           |          | WFPC2              |
| NGC 1052    | 13B/T         |             | 11.53    | 19       |           |          | NIFS; ACS/WFPC2    |
| IC 4296     | 13A/T         |             | 11.58    | 51       |           |          | ACS/WFPC2          |
| NGC 4696    |               | cDpec       | 11.59    | 38       |           | Cen cl   | ACS/WFPC2          |
| NGC 3962    | 13A/T         |             | 11.66    | 31       |           |          |                    |
| NGC 5018    | 13A/T         |             | 11.71    | 38       |           |          | WFPC2              |
| NGC 2974    | 13A/T         |             | 11.78    | 25       |           |          | WFPC2              |
| NGC 6868    | 13A/T         |             | 11.83    | 32       |           |          |                    |
| NGC 4105    | 13A/T         |             | 11.88    | 28       |           |          |                    |
| NGC 5044    | 13A/T         |             | 11.92    | 35       |           |          | WFPC2              |
| NGC 3904    | 13A/T         |             | 11.95    | 25       |           |          |                    |
| NGC 1700    | 13B/T         | E4          | 11.96    | 41       |           |          | WFPC2              |
| S0s         |               |             |          |          |           |          |                    |
| NGC 3115    | 13A/R S       | 0^-         |          | 9.98     | 10.2      |          | ACS/WFPC2          |
| NGC 1380    | 08B/T S       |             |          | 11.1     | 19        | Forn cl  | ACS/WFPC2          |
| NGC 1574    |               | A0^-(s)     | ?        | 11.19    | 19        | Dor gr   | WFPC2              |
| NGC 2784    |               | A0^0(s)     |          | 11.21    | 8.5       | - 0      | WFPC2              |
| NGC 1332    |               | 0^-?(s)     |          | 11.24    | 20        | Erid cl  | SINFONI; WFPC2     |
| NGC 5101    |               | R)SB0/a     | (rs)     | 11.58    | 27        |          | ,                  |
| NGC 2217    | · ·           | R)SB0+(     |          | 11.59    | 19        |          |                    |
| NGC 7049    | ```           | Á0^0(s)     |          | 11.64    | 28        |          | ACS                |
|             |               |             |          |          |           |          |                    |

Note (second column) - Reduced by: R = Roberto Menezes; T = Tiago Ricci; P = Patrícia Silva; I = Inaiara Andrade.

N1316 is a giant E. NED lists it as SAB0<sup>^</sup>0(s)

NGC 1332, an elliptical (E6) or S0? (Kormendy and Ho, 2013

### 2 - The sub-sample of low-mass ( $\sigma$ <200 km/s) ETGs

| Name        | Sem/<br>Red | Type<br>NED       | B<br>mag | d<br>Mpc | group/        | clust          |
|-------------|-------------|-------------------|----------|----------|---------------|----------------|
| Ellipticals |             |                   |          |          |               |                |
| NGC 5128    | 15A/R       | S0 pec            | 7.89     | 3.7      | -24.34        | Cen A SINFONI  |
| NGC 4697    | 14A/R       |                   | 10.11    | 12.3     | 2.110.1       |                |
|             |             |                   | .00      |          |               |                |
| NGC 1344    | 16B         | E5                | 11.28    | 18.7     |               | Erid cl        |
| NGC 5061    | 15A         | EO                | 11.35    | 25.6     |               |                |
| NGC 7144    | 15B         | EO                | 11.79    | 25.5     |               |                |
| NGC 0596    | 16B         | cD pec?           | 11.88    | 21.5     |               |                |
| NGC 1427    | 16B         | cD                | 11.94    | 19.4     |               | Erid cl        |
| IC 5328     | 16A         | E4                | 11.95    | 34.7     |               |                |
|             |             |                   |          |          |               |                |
| S0s         |             |                   |          |          |               |                |
| NGC 1291    | 14B/I       | (R)SB0/a(s)       | 9.42     | 8.6      |               |                |
| NGC 1553    | 14B/R       | SA0^0(r)          | 10.42    | 15.1     |               | Dor gr         |
| NGC 5102    | 15A/I       | SA0^-             | 10.64    | 18.8     |               | SINFONI?       |
| NGC 4753    | 15A/        | IO                | 10.85    | 16.9     |               | Virgo cl       |
|             |             | 11                | .00      |          |               |                |
| NGC 0936    | 15A/R       | SB0^+(rs)         | 11.19    | 20.7     |               |                |
| NGC 4546    | 08A/T       | SB0^-(s)?         | 11.3     | 18.1     |               | WFPC2          |
| NGC 1326    | 16B/I       | (R)SB0^+(r)       | 11.34    | 17.0     |               |                |
| NGC 6684    | 15A/I       | (R')SB0^0(s)      | 11.34    | 12.4     |               |                |
| NGC 1302    | 16B         | (R)SB0/a(r)       | 11.38    | 20       |               |                |
| IC 5267     | 15A         | SA0/a(s)          | 11.39    | 26.1     |               |                |
| NGC 4856    |             | SB0/a(s)          | 11.4     | 21.1     | (Não observáv | el; 15A) SOAR? |
| NGC 4958    | 15A         | SB0(r)? e-o       | 11.48    | 18.5     |               |                |
| NGC 1543    | 15B         | (R)SB0^0(s)       | 11.49    | 17.2     |               | Dor gr         |
| NGC 1201    | 16B         | SA0^0(r)?         | 11.56    | 20.4     |               |                |
| NGC 1537    | 15B         | SAB0^- pec?       | 11.62    | 18.5     |               |                |
| NGC 1527    | 15B         | SAB0^-(r)?        | 11.7     | 16.6     |               |                |
| NGC 1411    | 15B         | SA0^-(r)?         | 11.7     | 15.5     |               |                |
| NGC 4691    | 15A         | (R)SB0/a(s) p     | 11.7     | 22.5     |               |                |
| NGC 1533    | 15B         | SB0^-             | 11.71    | 18.4     |               | Dor gr         |
| NGC 4984    | 16A         | $(R)SAB0^{+}(rs)$ |          | 21.3     |               |                |
| NGC 1387    | 15B         | SAB0^-(s)         | 11.83    | 17.2     |               | Erid cl        |
| NGC 1947    | 15B         | S0^- pec          | 11.86    | 16.3     |               |                |

D(median) = 18.7 Mpc NGC 5128 (Cen A) is an elliptical with a merger in progress (Kormendy and Ho, 2013). 3 - The sub-sample of early spiral galaxies (Sa-Sb)

| Name     |               | Туре            | B(T)    | d (Mp | c) MksT |         |                 |
|----------|---------------|-----------------|---------|-------|---------|---------|-----------------|
|          |               | NED             | mag     | Mpc   |         |         |                 |
| M 104    | 10B/R         | SA(s)a e-on     | 9.28    | 10.4  | -25.36  |         | NIFS; ACS/WFPC2 |
| NGC 1068 | / <b>R</b>    | (R)SA(rs)b      | 9.55    | 13.5  | -24.66  |         | NIFS; SINFONI   |
| NGC 1097 | 16B/Thai      | SB(s)b          | 10.16   | 20.0  |         |         |                 |
| NGC 1365 | 14B/          | SB(s)b          | 10.21   | 17.9  |         | Forn cl |                 |
| NGC 4699 | 13A/T         | SAB(rs)b        | 10.44   | 24.7  |         |         |                 |
| NGC 1398 | 15B/          | (R')SB(r)a      | 10.6    | 21.0  |         | Erid cl |                 |
| NGC 1433 | 15B/          | (R')SB(r)ab     | 10.68   | 10.0  |         |         |                 |
| NGC 1808 | 15B/          | (R)SAB(s)a      | 10.7    | 11.5  |         |         |                 |
|          |               | 11              | .00     |       |         |         |                 |
| NGC 1672 | 15B/          | SB(s)b          | 11.03   | 14.5  |         | Dor gr  |                 |
| NGC 7213 | 15A/          | SA(s)a?         | 11.18   | 22    |         |         |                 |
| NGC 7410 | 15A/          | SB(s)a          | 11.3    | 20.1  |         |         |                 |
| NGC 1617 | 16B /         | SB(s)a          | 11.37   | 13.4  |         | Dor gr  |                 |
| NGC 1512 | 17B /         | SB(r)a          | 11.38   | 12.3  |         |         |                 |
| NGC 1350 | 17B /         | (R')SB(r)ab     | 11.4    | 20.9  |         | Erid cl |                 |
| NGC 7552 | 17A/          | (R')SB(s)ab     | 11.4    | 17.1  |         |         |                 |
| NGC 7582 | 17B/T         | (R')SB(s)ab     | 11.46   | 20.6  |         |         | SINFONI?        |
| NGC 1371 | 1 <b>7B</b> / | SAB(rs)a        | 11.5    | 23.2  |         | Erid cl |                 |
| NGC 1532 | 1 <b>7B</b> / | SB(s)b pec e-or | n 11.53 | 17.0  |         | Forn cl |                 |
| NGC 7606 | 16A/ok        | SA(s)b          | 11.55   | 31.5  |         |         |                 |
| NGC 7727 | 17B/          | SAB(s)a pec     | 11.55   | 23.3  |         |         |                 |
| NGC 1425 | 17B/          | SA(s)b          | 11.6    | 21.3  |         | Forn cl |                 |
| NGC 1964 | 17B/          | SAB(s)b         | 11.6    | 21.4  |         |         |                 |
| NGC 0210 | 1 <b>7B</b> / | SAB(s)b         | 11.65   | 21.0  |         |         |                 |
| NGC 4593 | 17A/          | (R)SB(rs)b      | 11.72   | 33.9  |         |         |                 |
| NGC 5792 | 16Aok         | SB(rs)b         | 11.72   | 24.4  |         |         |                 |
| NGC 0150 | 18B /         | SB(rs)b?        | 11.75   | 21.0  |         |         |                 |
| NGC 7496 | 17A/          | SB(s)b          | 11.78   | 15.0  |         |         |                 |
| NGC 0986 | 18B/          | SB(rs)ab        | 11.8    | 17.1  |         |         |                 |
| NGC 7723 | 18B/          | SB(r)b          | 11.85   | 27.4  |         |         |                 |
| NGC 0779 | 18B/          | SAB(r)b         | 11.86   | 17.7  |         |         |                 |
| NGC 3223 | 17A           | SA(s)b          | 11.88   | 33.4  |         |         |                 |
| NGC 4818 | 17A/          | SAB(rs)ab pec'  | ? 11.89 | 20.0  |         |         |                 |
| NGC 4941 | 17A/          | (R)SAB(r)ab?    | 11.9    | 18.2  |         |         |                 |
| NGC 4995 | 17A/          | SAB(rs)b        | 11.9    | 28.9  |         |         |                 |
| NGC 4902 | 17A/          | SB(r)b          | 11.9    | 39.2  |         |         |                 |
| NGC 6753 | 17A/          | (R)SA(r)b       | 11.93   | 42    |         |         |                 |

D (median) = 21 Mpc

4 - The sub-sample of Milky Way twins (Sbc)

| Name     | Sem<br>Red    | Type<br>NED   | B(T)<br>mag | d<br>Mpc |
|----------|---------------|---------------|-------------|----------|
| NGC 6744 | 14A/P         | SAB(r)bc      | 9.24        | 9.5      |
| NGC 1566 | 13B/P         | SAB(s)bc      | 10.21       | 12.2     |
| NGC 613  | 14B/P         | SB(rs)bc      | 10.75       | 25.1     |
| NGC 1792 | 14 <b>B</b> / | SA(rs)bc      | 10.85       | 13.2     |
| NGC 134  | 15A/P         | SAB(s)bc      | 10.96       | 18.9     |
|          |               | 11            | .00         |          |
| NGC 157  | 14B/          | SAB(rs)bc     | 11.04       | 19.5     |
| NGC 4030 | 14A/          | SA(s)bc       | 11.07       | 24.5     |
| NGC 5247 | 15A/          | SA(s)bc       | 11.1        | 22.2     |
| NGC 1300 | 13B/T         | SB(rs)bc      | 11.1        | 18.0     |
| NGC 2442 | 14A/          | SB(s)bc pec   | 11.16       | 17.1     |
| NGC 2207 | 15A/          | SAB(rs)bc pec | 11.35       | 26.5     |
| NGC 5054 | 15A/          | SA(s)bc       | 11.51       | 19.8     |
| NGC 4939 | 15A/          | SA(s)bc       | 11.56       | 39       |
| NGC 7205 | 16A           | SA(s)bc       | 11.57       | 19.4     |
| NGC 1255 | 16B           | SAB(rs)bc     | 11.6        | 21.5     |
| NGC 3887 | 17A           | SB(r)bc       | 11.6        | 19.3     |
| NGC 7314 | 16A ok        | SAB(rs)bc     | 11.65       | 18.5     |
| NGC 7083 | 17A           | SA(s)bc       | 11.8        | 33.3     |
| NGC 0289 | 16B           | SB(rs)bc      | 11.81       | 22.8     |
| NGC 4981 | 16A ok        | SAB(r)bc      | 11.83       | 24.7     |
| NGC 1515 | 16B           | SAB(s)bc      | 11.93       | 16.9     |
| NGC 1421 | 16B           | SAB(rs)bc?    | 11.95       | 26.4     |
| NGC 5530 | 18A           | SA(rs)bc      | 11.98       | 14.      |
|          |               |               |             |          |

MksT Gr/cl

double liner? Dor gr WFPC2 double bulge HST; SINFONI H, K

-24.11 Erid cl ACS/WFPC2; SINFONI H, K

WFPC2

D (median) = 19.5 Mpc

5 - The sub-sample of late type galaxies (Sc-Sd)

| Name                 | Sem Type                                                    | B(T) d                   | Gr/cl                                     |
|----------------------|-------------------------------------------------------------|--------------------------|-------------------------------------------|
|                      | Red Ned                                                     | mag Mpc                  |                                           |
| NGC 253              | 13B/R SAB(s)c                                               | 8.13 3.1                 | Phoenix; ACS/WFPC2                        |
| N5236/M83            | 14A/R SAB(s)c                                               | 8.51 7.0                 | ACS/WFPC2                                 |
| NGC 300              | 13B/R SA(s)d                                                | 8.7 2.0                  | ACS/WFPC2                                 |
| NGC 1313             | 12B/R SB(s)d                                                | 9.37 3.9                 | paper                                     |
| NGC 247              | 15A/R SAB(s)d                                               | 9.51 3.6                 | like N5102? NIFS(2008)                    |
| NGC 7793             | 16B SA(s)d                                                  | 9.65 4.2                 |                                           |
| NGC 3621             | 14A/R SA(s)d                                                | 10.03 6.8                | paper off-nucl Sy? GNIRS(Mason) ACS/WFPC2 |
| NGC 2997             | 14B/R SAB(rs)c                                              | 10.32 10.8               | ACS/WFPC2                                 |
| NGC 1232             | 16B SAB(rs)c                                                | 10.5 18.7                | Erid cl                                   |
| NGC 5068             | 15A/R SAB(rs)cd                                             | 10.53 6.1                | strong off-nuc HII WFPC2                  |
| NGC 908              | 14B/R SA(s)c                                                | 10.87 17.6               | double bulge??                            |
| NGC 5643             | 14A/R SAB(rs)c                                              | 10.89 16.9               | WFPC2                                     |
| NGC 1187             | 14B/R SB(r)c                                                | 10.93 18.8               | commet-shaped bulge??                     |
| NGC 2835             | 15A/ SB(rs)c                                                | 10.95 10.8               |                                           |
| NGC 1559             | 13B/ SB(s)cd                                                | 10.97 15.7               | WFPC2                                     |
| NGC 7424             | 13A/R SAB(rs)cd                                             | 10.99 11.5               | WFPC2                                     |
|                      |                                                             | 11.00                    |                                           |
| NGC 7090             | 15B SBc? e-on                                               | 11.1 8.4                 | ACS/WFPC2                                 |
| NGC 1084             | 16B SA(s)c                                                  | 11.25 21.2               |                                           |
| IC 5332              | 17B SA(s)d                                                  | 11.25 8.4                | WFPC2                                     |
| NGC 1448             | 17B SAcd? e-on                                              | 11.3 17.4                | ACS                                       |
| NGC 578              | 17B SAB(rs)c                                                | 11.48 21.8               |                                           |
| NGC 1042             | 17B SAB(rs)cd                                               | 11.49 9.4                | WFPC2                                     |
| NGC 1637             | 17B SAB(rs)c                                                | 11.52 10.7               |                                           |
| IC 5201              | 15A SB(rs)cd                                                | 11.54 14.4               |                                           |
| NGC 4731             | 15A SB(s)cd                                                 | 11.55 19.7               |                                           |
| NGC 3511             | 15A SA(s)c                                                  | 11.56 14.3               |                                           |
| NGC 1087             | 17B SAB(rs)c                                                | 11.56 17.5               |                                           |
| NGC 4666             | 15A SABc?                                                   | 11.56 18.2               |                                           |
| NGC 7713             | 18B SB(r)d?                                                 | 11.65 10.3               |                                           |
| NGC 1385             | 17B SB(s)cd                                                 | 11.65 14.9               | Erid cl                                   |
| NGC 3672             | 17A SA(s)c                                                  | 11.66 27.1               |                                           |
| NGC 4487             | 16A2xok SAB(rs)cd                                           |                          |                                           |
| NGC 7184             | 16Aok SB(r)c                                                | 11.67 33.6               |                                           |
| NGC 4781             | 16AokSB(rs)d                                                | 11.69 16.1               |                                           |
| NGC 1744             | 18B SB(s)d                                                  | 11.7 10.8                |                                           |
| NGC 4775             | 16AokSA(s)d                                                 | 11.74 26.6               |                                           |
| NGC 1249             | 18B SB(s)cd                                                 | 11.8 15.8                |                                           |
| NGC 1493             | 18B SB(r)cd                                                 | 11.82 11.3               |                                           |
| NGC 2090             | 18B SA(rs)c                                                 | 11.85 12.8               |                                           |
| NGC 5170             | 17A SA(s)c? e-on                                            | 11.88 27.3               |                                           |
| NGC 5556             | 17A SAB(rs)d                                                | 11.88 18.7               |                                           |
| NGC 5334             | 17A SAD(13)d<br>17A SB(rs)c?                                | 11.9 32.6                |                                           |
| IC 5273              | 17A SB(IS)c?<br>17A SB(rs)cd?                               | 11.9 52.0<br>11.9 16.6   |                                           |
| NGC 6118             | 17A SB(18)cu?<br>18A SA(s)cd                                | 11.9 10.0                |                                           |
| NGC 6118<br>NGC 4504 |                                                             | 11.91 23.4               |                                           |
|                      | 18A $SA(s)cd$                                               |                          |                                           |
| NGC 5584             | 18A SAB(rs)cd $18P$ SAB(rs)cd                               | 11.95 26.7               |                                           |
| NGC 685              | 18B SAB(r)c                                                 | 11.97 15.2               |                                           |
| NGC 5161<br>NGC 3513 | $\begin{array}{c} 18A  SA(s)c? \\ 18A  SB(rs)c \end{array}$ | 11.98 24.3<br>11.99 13.1 |                                           |
| NUC 3313             | 18A SB(rs)c                                                 | 11.99 13.1               |                                           |

D(median) = 15.7 Mpc Note- Reduced by: R = Roberto Menezes; T = Tiago Ricci; P = Patrícia Silva; I = Inaiara Andrade.

# Gemini Integration Time Calculator GMOS-S - 2016B.2.1.1

<u>Click here for help with the results page.</u> Read noise: 4.1 derived image size(FWHM) for a point source = 1.01 arcsec

Sky subtraction aperture = 250.0 times the software aperture.

Requested total integration time = 1800.00 secs, of which 1800.00 secs is on source.

### S/N for BB:

The peak pixel signal + background is 23090 e- (12827 ADU). This is 22% of the full well depth of 106000 e-.

### S/N for HSC:

The peak pixel signal + background is 24950 e- (13861 ADU). This is 24% of the full well depth of 106000 e-.

### S/N for SC:

The peak pixel signal + background is 6499 e- (3610 ADU). This is 6% of the full well depth of 106000 e-.

<u>Click here for ASCII signal spectrum.</u> <u>Click here for ASCII background spectrum.</u> <u>Click here for Single Exposure S/N ASCII data.</u> <u>Click here for Final S/N ASCII data.</u>



### Signal and SQRT(Background) in one pixel IFU element offset: 0.00 arcsec



### Intermediate Single Exp and Final S/N in aperture IFU element offset: 0.00 arcsec

Output:

• Spectra autoscaled.

### **Input Parameters:**

Instrument: GMOS-S

Source spatial profile, brightness, and spectral distribution: The z = 0.00581 extended source is a 17.5 Vega/arcsec<sup>2</sup> spiral-galaxy in the B band.

Instrument configuration:

Optical Components:

- Fixed Optics
- IFU Transmission
- Grating Optics: B600\_G5323
- Detector Hamamatsu array

Amp gain: Low, Amp read mode: Slow

• Focal Plane Mask: IFU Right Slit (red)

Central Wavelength: 562.0 nm

Spatial Binning: 1 Spectral Binning: 1 Pixel Size in Spatial Direction: 0.080778arcsec Pixel Size in Spectral Direction: 0.05nm IFU is selected,with a single IFU element at 0.0arcsecs.

Telescope configuration:

- silver mirror coating.
- side looking port.
- wavefront sensor: oiwfs

Observing Conditions:

- Image Quality: 70.00%
- Sky Transparency (cloud cover): 70.00%
- Sky transparency (water vapour): 100.00%
- Sky background: 80.00%
- Airmass: 1.50

Frequency of occurrence of these conditions: 39.20%

Calculation and analysis methods:

- mode: spectroscopy
- Calculation of S/N ratio with 3 exposures of 600.00 secs, and 100.00 % of them were on source.
- Analysis performed for aperture that gives 'optimum' S/N and 250 fibres on sky.

# Gemini Integration Time Calculator GMOS-S - 2016B.2.1.1

<u>Click here for help with the results page.</u> Read noise: 4.1 derived image size(FWHM) for a point source = 0.99 arcsec

Sky subtraction aperture = 250.0 times the software aperture.

Requested total integration time = 2700.00 secs, of which 2700.00 secs is on source.

### S/N for BB:

The peak pixel signal + background is 23602 e- (13112 ADU). This is 22% of the full well depth of 106000 e-.

### S/N for HSC:

The peak pixel signal + background is 25503 e- (14168 ADU). This is 24% of the full well depth of 106000 e-.

### S/N for SC:

The peak pixel signal + background is 3086 e- (1714 ADU). This is 3% of the full well depth of 106000 e-.

<u>Click here for ASCII signal spectrum.</u> <u>Click here for ASCII background spectrum.</u> <u>Click here for Single Exposure S/N ASCII data.</u> <u>Click here for Final S/N ASCII data.</u>





### Intermediate Single Exp and Final S/N in aperture IFU element offset: 0.00 arcsec

### Output:

• Spectra autoscaled.

### **Input Parameters:**

Instrument: GMOS-S

Source spatial profile, brightness, and spectral distribution: The z = 0.00431 extended source is a 17.5 Vega/arcsec<sup>2</sup> spiral-galaxy in the B band.

Instrument configuration:

**Optical Components:** 

- Fixed Optics
- IFU Transmission
- Grating Optics: R831\_G5322
- Detector Hamamatsu array
- Amp gain: Low, Amp read mode: Slow
- Focal Plane Mask: IFU Right Slit (red)

Central Wavelength: 585.0 nm

Spatial Binning: 1 Spectral Binning: 1 Pixel Size in Spatial Direction: 0.080778arcsec Pixel Size in Spectral Direction: 0.038nm IFU is selected,with a single IFU element at 0.0arcsecs.

Telescope configuration:

- silver mirror coating.
- side looking port.
- wavefront sensor: oiwfs

Observing Conditions:

- Image Quality: 70.00%
- Sky Transparency (cloud cover): 70.00%
- Sky transparency (water vapour): 100.00%
- Sky background: 80.00%
- Airmass: 1.50

Frequency of occurrence of these conditions: 39.20%

Calculation and analysis methods:

- mode: spectroscopy
- Calculation of S/N ratio with 3 exposures of 900.00 secs, and 100.00 % of them were on source.
- Analysis performed for aperture that gives 'optimum' S/N and 250 fibres on sky.