

SOAR as part of the O/IR "System" R. Chris Smith

What is a "System"

- Dictionary definition: System
 - An assemblage or combination of things or parts forming a complex or unitary whole
- In Astronomy
 - The combination of public and private telescopes and instrumentation that provides access to a wide range of capabilities to enable the broadest possible spectrum of scientific investigation
 - Includes balance over both *apertures* and *instrumentation*to meet the needs of the particular astronomical community

U.S. Ground-basedOptical-Infrared System

Large Facilities in the OIR System

GTC (via Florida) Keck (1, 2) Large Binocular Telescope SALT (through US partners) Hobby-Eberly Gemini (North, South) Magellan (Baade, Clay) MMT

Palomar (Hale) SOAR NOAO (Mayall, Blanco) Discovery Channel (2012) AEOS WIYN ARC Shane IRTF

Example

LSST, GSMT are future flagship System facilities

Focus on Southern Hemisphere

- Large System facilities available through NOAO
 - Gemini South 8m
 - Magellan 6.5m x 2
 - SOAR 4.1m
 - Blanco 4m
- Smaller System facilities
 - CTIO 1.5m, 1.3m, 1.0m, 0.9m
 - Run in collaboration with "SMARTS" Consortium
 - Small & Medium Aperture Research Telescope System

All facilities available, either through partnerships, time trades (guaranteed time) or "open skies"

Optimizing the System ~1990s

- With given apertures, need to carefully consider how to optimize instrumentation capabilities across facilities
- In ~1993, with Gemini & SOAR on the horizon, CTIO tried to develop an optimized plan for local large apertures (Blanco, Gemini, & SOAR)
 - Blanco strengths: wide field, prime focus access
 - SOAR strengths: narrow field, high image IQ, blue response
 - Gemini strengths: narrow field, high image IQ, red response, depth

Optimization Plan ~2000

- Blanco
 - MOSAIC II, wide field optical imager
 - ISPI, wide field IR imager
 - Hydra, wide field fiber spectrograph
 - RC Spectrograph (only until Goodman completed)
 - Echelle Spectrograph decommissioned
- SOAR
 - 1st generation instrument suite taking advantage of high IQ (SOI, OSIRIS, Goodman, Spartan, SIFS)
- Gemini
 - Instrument suite taking advantage of IR response and (of course) large aperture (inc. GMOS)

Optimization @ Small Apertures

- SMARTS:
 - Consortium of partners, OPEN to new members
 - Funding: diverse sources (Univs, Grants, Govts, etc)
- SMARTS optimization: no instrument changes

 CTIO 1.5m: Low+High Resspectrographs, Service
 Including CHIRON, R~80,000, range 420-870 nm
 CTIO 1.3m: Simultaneous Opt/IR imager, Service Obs
 CTIO 1.0m: Optical Imager, Classical Obs
 CTIO 0.9m: Optical Imager, ½ Service, ½ Classical

Ongoing Optimization ~2012

- Blanco
 - Wider field IR capability: NEWFIRM
 - Wider field Optical capability: DECam
 - Improved wide field fiber spectroscopy: Hydra upgrade
 - Additional single object spectroscopy (optical, IR?)
- SOAR
 - Higher resolution optical imaging (SAM AO)
 - High resolution spectroscopy (STELLES)
 - Additional capabilities (Goodman, BTFI, etc.)
- Gemini
 - Higher resolution IR imaging (NICI, MCAO)

NEWFIRM

- The NOAO Extremely
 Wide Field IRImager
 Project Scientist: Ron Probst
- An imager with...
 - Wide FOV: 28x28 arcmin
 - Near IR sensitivity: 1-2.5 microns, high throughput & QE
 - Sub-arcsecond resolution (0.4 arcsec/pixel)
 - Software support: both Pipeline reduction and IRAF package

Moves back and forth from KPNO & CTIO

Dark Energy Camera

- Two Deliverables
 - DECam imager
 - 570 megapixel camera, 62
 2Kx4K + 12 2Kx2K
 - 2.2 deg FOV (diam)
 - grizy filters
 - Community Pipeline

(Keck data from Beletic, Stover, & Taylor, assessment document 19 Jan 2001)

Hydra+

- New CCD+Controller
- Red Sensitive CCD
- Planned Nod & Shuffle mode

Hydra+ & COSMOS

Optical Spectrographs

COSMOS

- Partnership with OSU
- Imaging optical spectrometer
- $R \leq 3000$, 10 arcmin FOV, MOS
- 5 gratings at once (RC: 1)
- Throughput: ~ 40% (RC ~ 17%)
- Planned Nod & Shuffle in Red
- First light (Blanco): 2012

TripleSpec New near-IR spectrometer

- *R*~ 3000 (1" slit), 0.9 <λ< 2.4 micron spectrograph
- Fixed-format, cross-dispersed, 5 orders at once
- Partnership with Cornell University, delivery goal: 2014
 - Cornell built Hale 200-in version, this is copy

Sky spectrum, TripleSpec, Palomar Hale 200-in

Future: LSST

- Preparations
 - First dedicated NOAO/LSST staff member on the ground in La Serena (Jeff Barr)
 - Telescope controls team: finishing Blanco, upgrading SOAR, and preparing LSST system
 - Site preparation
 - Taking mountaintop off now...

RE-Optimization ~2020

- LSST timeline
 - "Construction" [funding] starting in ~2014
 - First light in ~2018
 - Full operations in ~2020
- Need to completely rethink the balance of instrumentation on across 4 large apertures
- Need to address the new science areas
 - Particularly TIME DOMAIN
 - SURVEY followup projects
- Work together with partners to achieve optimization across various "Systems"

Providing a platform for the future of the O/IR System in the Southern Hemisphere

Morado

16-19 May 2011, SOAR Sci Symposium, Brazil