Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Planetary nebulae and the chemical evolution of the galactic bulge

Oscar Cavichia

Department of Astronomy - IAG/USP - Brazil

05/17/2011

R. D. D. Costa (IAG/USP) W. J. Maciel (IAG/USP) M. Mollá (CIEMAT/Spain)

Acknowledgment:

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

-

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Content

Introduction

- Abundance distributions in the Milky Way
- Objectives

2 Data analysis

- Observations
- Data reduction
- Chemical abundances

Chemical evolution model

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Abundances in the inner Milky Way

Red Giant Stars (Meléndez et al. 2008)

- Bulge
- Thick disk
- Thin disk

Halo

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Abundances in the inner Milky Way Planetary Nebulae (Gutenkunst et al. 2008)

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

Data reduction Chemical abundances

Chemical evolution model

Conclusions

Abundances in the inner Milky way Planetary Nebulae (Cavichia et al. 2011)

The bulge/bar

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

COBE/DIRBE Near IR (Dwek et al. 1995) and Optical map (Copyright Axel Mallenhoff 2001).

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

The bulge/bar

Influences that a bar would has in the abundances distribution:

- Increases the gas flow towards the galactic center.
- Feed the star formation in the galactic center.
- Decreases the density of gas in the bulge-disk connection.
- Lower abundances in the bulge-disk connection.

Objectives

Introduction

- Abundance distributions in the Milky Way Objectives
- Data analysis
- Observations Data reduction Chemical abundances
- Chemical evolution model
- Conclusions

 To study of the distribution of chemical abundances in the inner Milky Way

 To obtain new chemical abundances of PNe in the inner Galaxy

 To provide observational constraints for the chemical evolution models

Development of a chemical evolution model including radial gas flows

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Observations

- Goodman Spectrograph (300 l/mm, 0.8" slit)
- 10 PNe from Jacoby & van de Steene 2005, A&A, 419, 563

- 2 PNe from Parker et al. 2006, MNRAS, 373, 79
- 4 nights (June 2009, 2010) in Remote Mode

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

- Observations Data reduction Chemical abundances
- Chemical evolution model
- Conclusions

Data reduction

- Correction of bias and flat-field
- Spectrum extraction
- Calibration in wavelength
- Calibration in flux

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Data reduction

Program PNPACK for data reduction and analysis

\bigcirc	executar_iraf	0 0 0
ecl	L> pn	
ec] + + The	executariraf	000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Data analysis

JaSt 52

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Physical parameters

Electronic density

$$\frac{I_{31}}{I_{21}} = \frac{g_3 A_{31} \nu_{31}}{g_2 A_{21} \nu_{21}} \left[\frac{1 + (A_{21}/n_e \gamma_{21})}{1 + (A_{31}/n_e \gamma_{31})} \right] e^{-E_{32}/kT}$$

Electronic temperature

$$\frac{I_{495.9} + I_{500.7}}{I_{436.3}} = \frac{7.73 \times e^{3.29 \times 10^4/T}}{1 + 4.45 \times 10^{-4} n_e/T^{1/2}}$$
$$\frac{I_{654.8} + I_{658.3}}{I_{575.5}} = \frac{6.91 \times e^{2.50 \times 10^4/T}}{1 + 2.5 \times 10^{-3} n_e/T^{1/2}}$$

・ロト・(日)・(日)・(日)・(日)・(日)・

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

- Observations Data reduction Chemical abundances
- Chemical evolution model
- Conclusions

Determination of the abundances

Ionic abundances

- $\frac{n(X^{i})}{n(H^{+})} = f(n_{e}, T_{e}, \text{atomic data}) \times \frac{I(\lambda)}{I(H_{\beta})}$
- IRAF nebular software (Shaw & Dufour 1995)

Elemental abundances

Ionization correction factors (ICF)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Kingsburgh & Barlow 1994

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Data analysis

Statistical Method for abundance determination

Alloin et al. (1979) $\epsilon(0) = 8.73 - 0.32 \times 03N2$

 $\epsilon(X) = \log(X/H) + 12$

$$O3N2 = log\left(\frac{[OIII]\lambda5007/H\beta}{[NII]\lambda6583/H\alpha}\right)$$

-1.0 < O3N2 < 1.9

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Data analysis

Statistical vs. temperature methods

・ロト・日本・日本・日本・日本・日本

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

- Observations Data reduction Chemical abundances
- Chemical evolution model
- Conclusions

Data analysis

Temperature upper limit vs. temperature methods

Data analysis

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

CCM2010 = Cavichia et al. 2010

500

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Data analysis

Sulfur vs. Oxygen

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Data analysis

Argon vs. Oxygen

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Data analysis

Oxygen radial abundance gradient

Disk data from Stanghellini et al 2010 () .

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Gradients in barred galaxies

 $\begin{array}{l} d(O/H)/dR \simeq -0.140(b/a) + 0.033 \\ \text{MWG: } b/a \sim 0.6 \text{ (Merrifield 2003)} \\ d(O/H)/dR \simeq -0.051 \text{dex/kpc} \\ \text{Observations: } d(O/H)/dR \simeq -0.04 \text{ to} - 0.07 \text{ (HII, PN, B stars)} \end{array}$

Introduction

Abundance distributions in the Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

The chemical evolution model

Description of the model

- Generalization of that developed by Ferrini et al. (1992) for the solar neighborhood
- Applied to the whole MWG by Ferrini et al. (1994)
- Other spiral galaxies by Mollá et al. (1996,1999)

• For the MW bulge by Mollá et al. (2000)

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

The chemical evolution model

Equations of the model

$$\begin{aligned} \frac{d}{dt}G_i(r_k,t) &= -X_i(r_k,t)\Psi(r_k,t) + \\ &+ \int_{M_l}^{M_u}\Psi(r_k,t-\tau_M)\,R_i(M)\Phi(M)dM + \\ &+ \left[\frac{d}{dt}G_i(r_k,t)\right]_{inf} + \\ &+ \left[\frac{d}{dt}G_i(r_k,t)\right]_{rf} \end{aligned}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Introduction

Abundance distributions in th Milky Way Objectives

Data analysis

Observations Data reduction Chemical abundances

Chemical evolution model

Conclusions

Model results

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - のへで、

Introduction

Milky Way

Data analvsis

- evolution

Conclusions

Conclusions

- SOAR spectra improved our knowledge about chemical abundances os PNe located near the galactic center
- First results show that they are originated from low mass stars
- The radial α -elements abundances indicate that they do not follow the trend of the disk
- A galactic chemical evolution model is used in order to simulate the effects of a bar on the chemical abundance gradient of the Galaxy
- The first results show that radial flows induced by the bar can flatten the gradient in a time scale of 4-5 Gyr.

Thanks SOAR people for the support!