V4140 Sgr: a SOAR flickering mapping experiment

R. Baptista (UFSC) B. Borges (UFGD) & A. Oliveira (UNIVAP)

Cataclysmic variables: basic model

- $L_{acr} = \frac{1}{2} G M_{WD} M_{dot} / R_{WD}$
- • $v = \alpha C_s H$
- (Shakura & Sunyaev 1973)
- Nova-likes:
 - > high α (0.1-1)
 - > high M_{dot} (10⁻⁹ 10⁻⁸)
- Dwarf novae (quiescence):
 - > low α (<0.05)
 - and/or
 - $> \text{low M}_{\text{dot}} (10^{-11} 10^{-10})$

Fast variability in CVs: flickering

V4140 Sgr: the SOI/SOAR data

- 15 quiescent light curves w/ eclipses
- Scatter -> flickering
- Asymmetric eclipse of flickering with orbital hump
- Analysis: ensemble
 & single methods

Steady-light & flickering maps

Flickering amplitude & disc viscosity

• MHD turbulence (Gertseema & Achterberg 92) $\alpha \sim 180 \ (\sigma_D/D)^2 \ (0.01 \ r/H)$

• High viscosity disc: $\alpha \sim 0.1$ if $\beta < 2.0^{\circ}$

 α decreases with increasing radius

The 2006 September outburst

Disc geometry from entropy landscape

- 3D eclipse mapping: ß (opening angle) + R_d (rim)
- Geometrically thin disc (even in outburst): $\alpha_{out} < 2.0^{\circ}$
 - (supports high viscosity)
- Disc shrinks during decline:
 R_d(out)= 0.8 R_{L1}
 R_d(quies)= 0.5 R_{L1}

Disc brightness maps from outburst to quiescence

Conclusions

- Evidences that V4140 Sgr is another dwarf nova with a highly viscous quiescent disc
 - Inconsistent with disc instability model
 - Outbursts probably powered by bursts of enhanced mass transfer from donor star
 - Members of this group: EX Dra, HT Cas, V2051 Oph, V4140 Sgr, ... (hunting others)