FISSS — 17 May 2011

SOAR-Spartan survey of molecular hydrogen in the Crab Nebula

Ed Loh¹, J Baldwin¹, G Ferland², Z Curtis¹, C R O'Dell³, A Fabian⁴, & P Salomé⁵ ¹Michigan State U, ²U Kentucky, ³Vanderbilt U, ⁴U Cambridge, ⁵Obs Paris

- Outline
 - Why Crab is interesting
 - Observations
 - Velocities & spatial distribution
 - Temperature
 - Ortho:para ratio
 - Mass
- Papers
 - A bright molecular core in a Crab filament, 2010 ApJ 716, L9
 - A survey of molecular hydrogen in the Crab Nebula, ApJ, 2011arXiv1103.6043L

• The H2 temperature in the Crab Nebula, submitted.

Survey of H₂ in the Crab Nebula

- The Crab Nebula is a unique object
 - It is close. 1arcsec =
 3×10¹⁶cm = 10LightDay =
 2000AU
 - Young. Supernova of 1054CE
 - Pulsar makes a wind of electrons & positrons.
 - 10TeV at the H₂ knots.
 - Bright synchrotron radiation.
 - Constant vL $_{\rm v}$ (erg/s) from far IR to 1MeV γ

NASA, ESA, J. Hester & A. Loll (Arizona State U.)

Discovery of H₂ & survey with Spartan

- Graham, Wright, & Longmore (1980) used a circular variable filter with a 20" aperture.
 - Detected H_2 in 2/3 filaments
 - H2 survives flux of photons & particles.
- Spartan survey
 - Cover entire nebula
 - Subarcsec resolution to resolve emission & determine brightness (erg/s/cm²/sr)
 - Two filters & Continuum 3
 - 2121.8nm H₂ line
 - Brγ

Apertures of GWL

Spartan survey

- 24 Dec 2009–24 Mar 2010
- Detectors 0 & 1 on Crab and detectors 2 & 3 off.
 Then switch. Dither to cover gaps.
- 6.5, 7.0, & 9.3hr on H2, Brγ, & Cont 3.

Follow-up observations

- OSIRIS K-band spectra of 7 knots
 - Nov 2010 Jan 2011
 - 2-3hr on a knot.
- Existing Spitzer spectra
 - 0-0 S(0) to 0-0 S(7) lines of H₂.
 - Irregular coverage of H₂ knots
 - Full observations of Knot 1
- Kitt Peak Goldcam spectra

Existing Spitzer data. Box: High res. Yellow & red slits: Low res.

Cont 3 (2208nm)

H2-Cont 3: 55 H₂ knots

- Median filtered with long vertical and horizontal kernels to eliminate detector features, mainly edges.
 - Residuals are diagonals.
- Stars were eliminated by hand.

Knots & HST F631 [OI]

NASA, ESA, J. Hester & A. Loll (Arizona State U.)

Velocities

- KPNO Goldcam
 - 3700-7400Å at 6.3Å resolution
 - 3.8 arcsec ×5 arcmin slit
 - $-\sigma$ = 100km/s
- Knot 48 is simple.
 - [O III] and [S II] agree on one velocity.
- Knot 55 is has two velocities.
 - Choose one where [SII] is brighter.

Spectra in the [O III] and [S II] regions, and the corresponding extracted [O III] (solid) and [S II] (dashed) profiles. The velocity scale is for [O III] 5007 and [S II] 6716

Velocity distribution

- Most knots are moving away. We primarily see the back side.
- Not due to H2 filter.
 - Cutoffs: -3000 & +1000km/s
- Two interpretations
 - The back is lit and the knot is opaque at 2µm
 - Large spatial variation.
 - Few knots in NW.

Spatial distribution of knots

- Find the 3-d distance r $\tan \theta = v_r t/r_p$ $r = r_p/\cos \theta$
- The knots are on a shell.
 - That means $v_r t \ll r_p$ for most of the knots.

Histogram of r_{trans}/r. The line assumes the objects are on a shell.

H₂ correlates with [SII], not [OIII]

Compare with [SII] (HST FN673) and [OIII] (HST FN502)

Knots in SE

Knots in NW

• At ends of fingers

Knots 50 & 51, two in NW

- At end of a finger (Rayleigh-Taylor?)
- Clean case.
 - At the edge
 - Isolated
- v₅₁=108km/s
- v₅₀=123km/s
 - Largest
 v_D=800km/s
- K51 is in a hole in [SII] & [OIII]
- Dust seen in absorption.

Knots 50 and 51 Green contours are H₂, in linear steps of 0.005 DN, peak=0.026 DN Red box is 10" = 0.097 pc

(white = dust absn)

H2 vs. [SII] pixel by pixel

 Pixel-by-pixel 25 5 correlation (in 20 units of σ : I/σ [SII] 15 40 10 $\frac{1}{3}I_{[SII]} < I_{H2}$ $< 2I_{[SII]}$ 5 0 20 30 40 10 0 $I/\sigma H2$

[SII] vs H2 pixel intensity in units of σ for pixels within H2 knots. Knot centers with Br γ /H2<0.25 (+) and Br γ /H2>0.6 (box).

Brγ

- $H_2/Br\gamma$ is high
 - Photo-dissociative region in Orion: 0.07
 - Filament in cooling flow in NGC1275: 8
- Spatial correlation between H₂ & Brγ is poor.
 - H₂ & [SII] are correlated.
 - H_2 & Br γ may be spatially separate.

K-band spectra

- OSIRIS K-band spectra of 7 knots
 - Nov 2010 Jan 2011
 - 2-3hr on a knot.

Boltzmann plot

- Boltzmann plot
 - Line intensity I/g_u vs excitation energy
 - In equilibrium, $\frac{I}{I} = e^{-E/kT}$

$$\frac{1}{2} = e$$

- Strongest line 1-0 S(1) means
 - ν_u =1 $\rightarrow \nu_l$ =0
 - − J_u =3 → J_I =1 (S means ΔJ =-2)
- Exclusion principle couples nuclear spin and molecular rotation.
 - J=0, 2, 4, ... and nuclear singlet (para)
 - J=1, 3, 5,... and nuclear triplet (ortho)

Ortho-para ratio

- Ratio of number of ortho to para hydrogen (OTP) depends on temperature
 - Ortho means J=1, 3..., which has higher energy than J=0.
 - At high T, OTP=3because ortho is a triplet.
 - At T=97K, OTP=1.5
- Ortho and para conversion occurs by substituting a proton.
- In Knot 51, the para lines are too strong. OTP<3.

Ortho-to-para ratio of 6 knots

- Mean OTP=2.5 is a clue for H2 excitation.
- In equilibrium, OTP=2.5 for T=150K
- For ν=2 : ν=1, T=3000K

Temperature and density of knots

- We measured electron density from [SII] doublet. 2000cm⁻³.
- Use measured excitation temperature of H₂ (3000K) as the gas temperature in molecular region.
- Assume pressure balance to get density in molecular region 1.4-2.1×10⁴ cm⁻³. (Assume T_{ion} = 15000.)
- Knots are at temperature & density of max emission.
 - Higher $T \Rightarrow$ dissociation
 - Higher $n \Rightarrow$ collisions deexcite

Measured H2 temperatures *Tmol* and deduced H densities *nmol* (points), plotted over contours of log10 of the surface brightness per H baryon $4\pi j(2.12\mu m)/nmol$ (erg cm3 s-1). Line is constant pressure.

Emission is from thin surface

Pulsar

- Emissivity of H2 (erg/s/cm3) & measured surface brightness of 1-0S(1) \Rightarrow thickness of emitting region $l = 10^{14}$ cm
- Width of a knot (2arcsec at 2kpc) $w = 6 \times 10^{16}$ cm. For all 6 knots, l

$$\frac{t}{w} = 0.0011 \pm 0.0004$$

Mass of H₂ in the knots

Component	Mass
Progenitor	10
Filaments (ionized & neutral)	4.6±1.8
Pulsar	1.4
Missing	4±1.8

- Assume density of knot is that of the thin emitting region.
- Since temperature of non-emitting interior is cooler, density is higher.
- 55knots.

$M_{\rm H2} \ge 1.0 M_{\rm sun}$

• Fesen, Shull, Hurford 1997: 4±1.8M_{sun} is missing.

Questions

- How is H2 excited? Clues:
 - T=3000K
 - Ortho:para ratio <3, the high temperature equilibrium value.
 - Most knots are moving away.
 - Knots are on a shell.
- Other observations
 - GWL find [FeII] 1.646µ throughout a filament and also on our knots. Plan to observe.
 - SE knots look different morphologically. Are their temperatures different?
 - Is dust seen for all knots on the near side?
 - Reduce Spitzer data to see 0-0 transitions.