White dwarf stars

Kepler Luciano Fraga Bárbara Castanheira Group of Brazilian Resident Astronomers

White dwarf pulsations

Pulsations ... Seismology

Pulsations/Seismology: Y₁₀ e Y₁₁

Photometry

- CCD: star + comparisons + skies
- g-modes in Earth's atmosphere

Althaus et al. 2010 ARA&A

Fourier Transform of PG 1159-035 data

Measure thickness of envelope

Costa & Kepler 2008: rotation, contraction rates, cooling rates

- dP/dt
- $dP_{Rotation}/dt$
- dR/dt
- dT/dt

riod: 518.2s ()=1; m=-1; k=20± 2) Pelet - (+3.2± 1.5)×10⁻¹¹er⁻¹

ntod: 414.3s()=2; m=-1; b Pdat- (-140 ± 15) × 10" "++ 414 4 414 4 414.35 414.30 5 1990 1995 2000 2005 2010

482 42 985 1990 1995 2000 2005 2010

1985 1990 1995 2000 2005 2010 Period: 552.4s (H-1; m=0; k=22£ 2)

819.60

560 1965 1990 1995 2000 2005 2010

Results

- $dP/dt (516s) = 1ms/yr = (13.146 \pm 0.003) x10^{-11} s/s$,
- $(517s)=(15.172\pm0.045)x10^{-11}s/s, (539s)=(-0.339\pm0.015)x10^{-11}s/s$
- $d^2P/dt^2 = (1.93\pm0.08)x_{10^{-20}} s/s, (517s) = (-81.7\pm2.7)+10^{-20} s/s$
- $P_{\text{rotation}} = 1.3935 \pm 0.0008 \text{ d}$
- $dP_{rot}/dt = (-2.13 \pm 0.05) \times 10^{-6} \text{ s/s}$
- $dR/dt = (-2.8 \pm 0.2) \times 10^{-12} \text{ s/s}$
- dT/dt=(-7.6<u>+</u>0.2)x10⁻¹¹ s/s
- Trapping at o.83R*<u>+</u>0.05
- ΔP(l=1)=21.43+0.03s
 M=0.59+0.02 M_{Sun}
- $\Delta P(l=2)=12.38\pm0.015$
- B<2000G

Average multiplets i=70°

Rotation effects

- Multiplets have different amplitudes
- Amplitudes change (energy exchange with rotation?)
- Gough: "...if there is an m = +1, m = -1 asymmetry ... it has to be a consequence of rotation."

DBVs – Atsuko Nitta et al. 2009

Fourier Transform of GD358 data

GD 358 light curve in 1996

Frequency (µHz)

Amplitude (mma)

Combination frequencies

DAVs (closed) and NOVs (open) 9 Mar 11

Large telescope, small amplitudes

SOAR SDSS J082239.43+082436.7 8&9 Feb, 10&12 Mar 08 <A>=0.51mma

Mode identification

Castanheira & Kepler 2008

DAV Seismology Results

G117-B15A: DAV T_{eff} = 12000K

Measure evolution

core composition, axions, dG/dt

G117-B15A 2011 P=215.197388s dP/dt= $(5.0\pm0.5\pm1.5)\times10^{-15}$

van Maanen 1917; SPY project: R. Napiwotzki)

DR7 – Kleinman, Kepler, Nitta et al. 2011

- 13724 DAs 7.3,1.7 x DR1,DR4
- 961 DBs 5.6,1.35 x DR1,DR4
- 968 DHs 32.3,108 x DR1,DR4
 - 785 DAH
 - 62 DBH
- 609 DCs 4.5, 2.1 x DR1,DR4

- 437 DZs 7.7, 3.3 x DR1, DR4
- 218 DQs 4.8, 2.1 x DR1, DR4
- 48 DOs 3.7, 1.2 x DR1, DR4
- 1640 WDMs 8.2 x DR1
- 98 Mixed WDs
- 1135 Uncertain WDs
- 1409 Subdwarfs

Literature

Potential central & directional

Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey Baybars Külebi, Stefan Jordan, Fabian Euchner, Boris Gänsicke & Heiko Hirsch 2009 -modeled the structure of the surface magnetic fields of the hydrogen-rich white dwarfs and -analysed the spectra of all known magnetic DAs from the SDSS : 97 previously published plus 44 newly discovered.

Theoretical Zeeman Splitting

SDSS J030407.40-002541.74

B(MG)

Goodman 1200 l/mm

 4×10^{-16} 3.5×10^{-16} $F_{\lambda}(ergs/cm^{2}/s/\AA)$ 3×10^{-16} 2.5×10^{-16} 2×10^{-16} SDSS 1.5×10^{-16} Soar 6500 6600 6700 6400 $\lambda(\text{\AA})$

SDSS J085106+120157

all magnetic white dwarfs

Fig. 6.4.— The distribution of magnetic field strengths as a function of effective temperature. Kanaan 1996

SDSS DAHs

SDSS J132350.28+010304.22 g=18.49 T=11904 \pm 228 log g=8.45 \pm 00.08 <A>=1.57mma

SDSS J121105.25-004628.5 0287-253-52023 DAH S/N=14 T_{eff}=22490<u>+</u>371K, log g=9.06<u>+</u>0.06

B>1 MG

755 DAH and 12549 DA, 5.7%
62 DBH and 889 DB, 6.5%
937⁺⁷⁶⁷ DH in 19503 WD, 4.8%^{+3.9}

B<1 MG

<M>=0.604<u>+</u>0.003 M_{sun}, DAs, S/N>20, T_{eff}>12000K, <S/N>=30, N=1505 (M>=0.651<u>+</u>0.005 M_{sun}, DBs, S/N>20, T_{eff}>16000K, <S/N>=27, N=82

DBs, S/N>25, 1:3:18 for T_{eff} >45000K:30000K:20000K exactly what expected by age -> NO DB GAP!

-A Spectroscopic Analysis of White Dwarfs in the Kiso Survey

M.-M. Limoges and P. Bergeron 2010

o.6o6 M_{sun} and a dispersion of 0.135 for 149 DAs (but Gianninas et al. 2010 o.64 M_{Sun} N=1304) o.758 M_{sun} and a dispersion of 0.192 for 19 DBs (but 0.696 M_{sun} for 103 DBs from SPY) -Spectroscopic Analysis of DA WD: Stark Broadening of H including non-ideal effects P.-E. Tremblay and P. Bergeron 2009 o.649 M_{sun} for 250 DAs – same value Ross Falcon got for mean gravitational redshift for SPY _no He in Keck spectra of cool white dwarfs – no convection mixing

Soar BPM37093

Crystal Pulsator

Keck spectra – no He

DR7 DAs auto32hg S/N \geq 30

Aurora? $10^{-16} M_o$ = comet - but 16% of dMs show H α chromosferic emissio

Masses from Colors DAHs S/N ${\geq}10$ & DAs S/N ${\geq}20$

M4

Μ4

Age of the Universe 2011

20 years ago only white dwarfs gave smaller than15 billion years

•WMAP
•1/H
•Globular Clusters
•Radioactive Decay
•While Dwarf Cooling
•Distance to SNIa

(13.75 \pm 0.11) Gyr (13 \pm 1) Gyr (13.2 \pm 1.5) Gyr (12.5 \pm 3) Gyr (12.7 \pm 0.7) Gyr 13.0 \pm 1.2 (0.72/h)Gyr

